[1]刘道文,杨拥军.基于混沌局部搜索的粒子群算法及其应用[J].计算机技术与发展,2021,31(04):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 037]
 LIU Dao-wen,YANG Yong-jun.Particle Swarm Algorithm Based on Chaos Local Search andIts Application[J].,2021,31(04):216-220.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 037]
点击复制

基于混沌局部搜索的粒子群算法及其应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年04期
页码:
216-220
栏目:
应用前沿与综合
出版日期:
2021-04-10

文章信息/Info

Title:
Particle Swarm Algorithm Based on Chaos Local Search andIts Application
文章编号:
1673-629X(2021)04-0216-05
作者:
刘道文杨拥军
许昌学院 电气机电工程学院,河南 许昌 461000
Author(s):
LIU Dao-wenYANG Yong-jun
School of Electrical & Mechano-Electronic Engineering,Xuchang University,Xuchang 461000,China
关键词:
混沌优化局部搜索全局搜索粒子群算法最优选址
Keywords:
chaos optimizationlocal searchglobal searchparticle swarm algorithmoptimal location
分类号:
TP391. 9
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 04. 037
摘要:
为提高混沌优化搜索结果的精度,在以粒子群算法进行全局搜索的基础上,根据全局搜索结果利用混沌优化进行局部搜索,实现在全局范围上搜索最优值。 分析局部混沌搜索方法,设计基于混沌局部搜索的粒子群算法的流程,利用混沌优化进行粒子群局部搜索以跳出局部最优搜索区域,避免陷入局部极小值和实现在全局范围上搜索目标函数的最 优值。 以 RMSE 误差作为搜索结果精度评价指标,通过 Rosenbrock 函数算例对基于混沌局部搜索的粒子群算法精度进行分析,并将该算法应用于停车场最优选址实际问题的决策。 研究结果表明,该算法搜索结果相较于混沌优化算法搜索结果具有更高的精度,其数值更逼近理论最优值,验证了其提高搜索结果精度的有效性和在解决实际问题上的可行性。
Abstract:
In order to improve the accuracy of chaos optimization results,based on the global search of particle swarm algorithm,the localsearch is carried out by using chaos optimization according to the global search results,and the optimal value is searched in the global range. Then we analyze the local chaos search method and design? ? ? ?the process of particle swarm algorithm based on the chaos local search. Chaos optimization is used in particle swarm algorithm local search to jump out of the local search area,so as to avoid falling into the local minimum and achieve the optimal value of the objective function in the global range. Taking RMSE error as the accuracy evaluation criteria of search results, the accuracy of particle swarm algorithm based on chaos local search is analyzed by Rosen brock function example, and subseq-uently the algorithm is applied to the decision-making of optimal location of parking lot. Proved by the research,the search results of the proposed algorithm have higher accuracy than those of chaos optimization algorithm,and its numerical value is closer to the theoretical optimal value,which verifies the effectiveness of improving the accuracy of the search results and the feasibility of solving practical problems.

相似文献/References:

[1]金萍 王浩 宗瑜 李明楚.基于调整学习的聚类算法[J].计算机技术与发展,2009,(02):58.
 JIN Ping,WANG Hao,ZONG Yu,et al.Clustering Algorithm Based on Fine- Tuned Learning[J].,2009,(04):58.
[2]路立伟 王亮 梁勇 范荣双.模拟退火算法在频率指配中的应用优化[J].计算机技术与发展,2011,(07):121.
 LU Li-wei,WANG Liang,LIANG Yong,et al.Optimization of Simulated Annealing in Solving Frequency Assignment Problem[J].,2011,(04):121.
[3]朱绍伟 徐夫田 滕兆明.一种改进蚁群算法求解最短路径的应用[J].计算机技术与发展,2011,(07):202.
 ZHU Shao-wei,XU Fu-tian,TENG Zhao-ming.Application of Improvement Ants Algorithm in Solving Shortest Path[J].,2011,(04):202.
[4]欧微 焦丽萍 陈平 易朝晖.基于邻域混沌PSO算法的目标分配优化方法[J].计算机技术与发展,2012,(08):85.
 OU Wei,JIAO Li-ping,CHEN Ping,et al.Targets Assignment Approach Based on Neighborhood Chaos Searching Particle Swarm Optimization[J].,2012,(04):85.
[5]春霞,周井泉,常瑞云. 基于 Memetic 算法的多目标复杂网络社区检测[J].计算机技术与发展,2016,26(01):53.
 ZHOU Chun-xia,ZHOU Jing-quan,CHANG Rui-yun. Multi-objective Complex Network Community Detection Based on Memetic Algorithm[J].,2016,26(04):53.
[6]常瑞云[],周井泉[],许斌[],等. 基于离散人工群算法的云制造服务组合[J].计算机技术与发展,2016,26(07):177.
 CHANG Rui-yun[],ZHOU Jing-quan[],XU Bin[],et al. Could Computing Service Composition Based on Discrete Artificial Bee Colony Algorithm[J].,2016,26(04):177.
[7]郭玉纯,曹小鹏,胡元娇.禁忌搜索灰狼优化算法研究[J].计算机技术与发展,2019,29(12):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 010]
 GUO Yu-chun,CAO Xiao-peng,HU Yuan-jiao.Research on Tabu Search-grey Wolf Optimization Algorithm[J].,2019,29(04):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 010]

更新日期/Last Update: 2020-04-10