[1]何亚锦,孙? ?伟,沈克勤,等.局部修复码的最优构造[J].计算机技术与发展,2021,31(04):112-117.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 019]
 HE Ya-jin,SUN Wei,SHEN Ke-qin,et al.Optimal Construction of Locally Repairable Codes[J].,2021,31(04):112-117.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 019]
点击复制

局部修复码的最优构造()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年04期
页码:
112-117
栏目:
系统工程
出版日期:
2021-04-10

文章信息/Info

Title:
Optimal Construction of Locally Repairable Codes
文章编号:
1673-629X(2021)04-0112-06
作者:
何亚锦1 孙? ?伟1 沈克勤1 张鑫楠1 刘向阳2
1. 长安大学 信息工程学院,陕西 西安 710064;
2. 国防科技大学 信息通信学院,陕西 西安 710106
Author(s):
HE Ya-jin1 SUN Wei1 SHEN Ke-qin1 ZHANG Xin-nan1 LIU Xiang-yang2
1. School of Information Engineering,Chang’an University,Xi’an 710064,China;
2. School of Information and Communication,National University of Defense Technology,Xi’an 710106,China
关键词:
分布式存储系统局部修复码相对差集酉设计最小距离
Keywords:
distributed storage systemlocally repairable codesrelative difference setsunital designminimum distance
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 04. 019
摘要:
分布式存储系统采用冗余策略来确保数据的可靠性和可用性,局部修复码( locally repairable codes,LRC) 引起了广泛的关注,极大地减少了数据修复过程中所连接的节点数,在数据存储中作用极大。 每个信息码元可以从其他 t 个不相交的集合中修复,且每个集合大小为 r ,称此类码具有 ( r,t) 局部度。 从校验矩阵入手,提出两种构造具有 ( r,t) 局部度的LRC 的方法。 方法一利用 姿 = 1 的非循环相对差集( relative difference sets,RDS) 构造关联矩阵,方法二提出了利用酉设计构造关联矩阵,均在关联矩阵的右侧添加单位矩阵,构造 LRC 的校验矩阵。 两种方法构造的 LRC 均是一个修复集中包含一个校验节点,并且可以达到任意 (r,t) 局部度。 理论分析表明,构造的两种码的最小距离均满足最小距离界,证明了两种码均是最优的 LRC。 非循环相对差集构造的码的信息率为 1 / 2,酉设计构造的码的码率在一定条件下高于 1 / 2,码率为 r +r t 。
Abstract:
The distributed storage system adopts redundancy strategy to ensure the reliability and availability of data. Locally repairable codes ( LRC) has attracted much attention,which greatly reduce the number of nodes connected in the process of data repair and play a great role in data storage. Each information symbol can be repaired from t other disjoint sets and each set size is r ,we call codes have (r,t) local degree. Starting with the calibration matrix,two methods of constructing LRC with? ? ?( r,t) local degree are proposed. The first one uses acyclic relative difference sets ( RDS) with parameters 姿 = 1 to construct the correlation matrix, and the other one proposes to construct the correlation matrix by using unital design,then adding the unit matrix to the right of the correlation matrix,and constructing the LRC check matrix. The LRC constructed by both methods are that a repair group contains a check node and can achieve arbitrary ( r,t) local degree. Theoretical analysis shows that the minimum distance of the constructed two codes satisfies the minimum distance boundary,which proves that both codes are optimal LRC. The information rate of code constructed by acyclic relative difference sets is1/2,and that of code constructed by unitary design is higher than 1/2 under certain conditions,and the code rate is r+r t .

相似文献/References:

[1]王瑞通[],李炜春[]. 大数据基础存储系统技术研究[J].计算机技术与发展,2017,27(08):66.
 WANG Rui-tong[],LI Wei-chun[]. Research on Technology of Basic Large Data Storage System[J].,2017,27(04):66.
[2]王甜甜,王汗青,孟 洁,等.自适应可分解部分重复码的扩展构造[J].计算机技术与发展,2023,33(11):14.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 003]
 WANG Tian-tian,WANG Han-qing,MENG Jie,et al.Extended Construction of Adaptive-and-resolvable Fractional Repetition Codes[J].,2023,33(04):14.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 003]

更新日期/Last Update: 2020-04-10