[1]陆兴华*,袁子越,王潇齐,等.基于动态压缩的无线传感网数据重构模型研究[J].计算机技术与发展,2021,31(02):127-132.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 024]
 LU Xing-hua*,YUAN Zi-yue,WANG Xiao-qi,et al.Research on Data Reconstruction Model of Wireless Sensor Network Based on Dynamic Data Compression[J].,2021,31(02):127-132.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 024]
点击复制

基于动态压缩的无线传感网数据重构模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年02期
页码:
127-132
栏目:
网络与安全
出版日期:
2021-02-10

文章信息/Info

Title:
Research on Data Reconstruction Model of Wireless Sensor Network Based on Dynamic Data Compression
文章编号:
1673-629X(2021)02-0127-06
作者:
陆兴华*袁子越王潇齐黄嘉昊
广东工业大学华立学院,广东 广州 511325
Author(s):
LU Xing-hua*YUAN Zi-yueWANG Xiao-qiHUANG Jia-hao
Huali College Guangdong University of Technology,Guangzhou 511325,China
关键词:
动态数据压缩无线传感网残差分析重构模型梯度向量特征挖掘
Keywords:
dynamic data compressionwireless sensing networkresidual analysisreconstruction modelgradient vectorfeature mining
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 02. 024
摘要:
由于动态数据的节点分布处于动态变化的状态,极具不稳定性,无法为无线传感网络实时提供可靠信息,需要进行数据重构处理,提升无线传感网数据稳定性,提出基于动态数据压缩的无线传感网数据重构模型。 通过构建多维节点组网模型,分析节点间位置关系,并得到其多模状态重组结果,利用重组结果融合并调度无线传感数据。 在融合结果中提取无线传感网络数据的梯度向量,为动态数据压缩提供基础处理数据,结合动态压缩方法,实现无线传感网数据重构。 经仿真实验结果可知,基于动态数据压缩的无线传感网数据重构能够有效利用数据时空相关性,压缩动态数据,高效降低重构残差值,提升节点位置获取精度,数据离群概率大大降低,同时有效降低了无线传感网数据的重构时间开销。 因此,该数据处理模型能够明显增加数据重构效率,降低网内数据通信开销。
Abstract:
Because the node distribution of dynamic data is in the state of dynamic change,which is extremely unstable and cannot provide reliable information for wireless sensor network in real time,it is necessary to carry out data reconstruction processing and improve the data stability of wireless sensor network. A data reconstruction model of wireless sensor network based on dynamic data com-pression is proposed. By constructing the multi-dimensional node networking model,the position relationship between nodes is analyzed, and the results of multi-mode state reorganization are obtained. The reorganization results are used to fuse and schedule the wireless sensing data. The gradient vector of wireless sensing network data is extracted from the fusion result,which provides basic processing data for dynamic data compression. By the simulation results,the data refactoring of wireless sensor network based on dynamic data compression can effectively utilize the spatio-temporal correlation of data and compress dynamic data, reducing the refactoring residual value efficiently,and improving the precision of node location acquisition,which greatly reduces the data outlier probability and effectively decreases the time overhead of data reconstruction of wireless sensor network. Therefore,the data processing model can obviously increase the data reconstruction efficiency and reduce the data communication overhead.

相似文献/References:

[1]马军,翟宇豪,姜鑫,等.基于Msp430无线安防传感网的设计研究[J].计算机技术与发展,2014,24(01):172.
 MA Jun[],ZHAI Yu-hao[],JIANG Xin[],et al.Design and Research of Security for Wireless Sensor Network Based on Msp430[J].,2014,24(02):172.
[2]李玲娟 丁亮.无线传感网中多跳路由算法的研究[J].计算机技术与发展,2010,(06):55.
 LI Ling-juan,DING Liang.Research on Multi-Hop Routing Algorithm of Wireless Sensor Network[J].,2010,(02):55.
[3]张利刚 鲍星合 罗斌.基于CC1100的无线传感网基站设计[J].计算机技术与发展,2009,(07):10.
 ZHANG Li-gang,BAO Xing-he,LUO Bin.A Design of Wireless Sensor Networks Base Station Based on CC1100[J].,2009,(02):10.
[4]司宏林 王晓蔚.无线传感网多信道的MAC层协议[J].计算机技术与发展,2006,(03):232.
 SI Hong-lin,WANG Xiao-wei.MAC Protocols of Multi-Channel Based on Wireless Sensor Networks[J].,2006,(02):232.
[5]刘拥军 王晓蔚.基于ZigBee的无线传感网的分群算法[J].计算机技术与发展,2006,(06):204.
 LIU Yong-jun,WANG Xiao-wei.A Clustering Algorithm in Wireless Sensor Network Based on ZigBee[J].,2006,(02):204.
[6]宗平 刘柳 乔秀泉[].认知无线电技术在ZigBee中的应用研究[J].计算机技术与发展,2012,(08):241.
 ZONG Ping,LIU Liu,QIAO Xiu-quan.Application Research of Cognitive Radio Technology in ZigBee[J].,2012,(02):241.
[7]沙超 王汝传.一种基于移动信标的无线传感网节能定位方法[J].计算机技术与发展,2012,(12):51.
 SHA Chao,WANG Ru-chuan.A Type of Energy-efficient Localization Method Based on Mobile Beacons for Wireless Sensor Networks[J].,2012,(02):51.
[8]顾兵.WSN 中规则区域的最优覆盖研究[J].计算机技术与发展,2013,(01):107.
 GU Bing.Research on Optimal Coverage Problem of Regular Region in WSN[J].,2013,(02):107.
[9]单剑锋,庄琴清,陈明.基于簇首概率优化的LEACH协议改进[J].计算机技术与发展,2013,(02):138.
 SHAN Jian-feng,ZHANG Qin-qing,CHEN Ming.Improvement of LEACH Algorithm Based on Optimized Percentage of Cluster Heads[J].,2013,(02):138.
[10]汪燕,李玲娟.无线传感网数据安全采集方案研究[J].计算机技术与发展,2013,(02):229.
 WANG Yan,LI Ling-juan.Research on Safe Data Acquisition Scheme for WSN[J].,2013,(02):229.

更新日期/Last Update: 2020-02-10