相似文献/References:
[1]杨杉 何跃.数据仓库和数据挖掘技术在保险公司中的应用[J].计算机技术与发展,2011,(06):157.
YANG Shan,HE Yue.Application of Data Warehouse and Data Mining to Life Insurance Company[J].,2011,(02):157.
[2]王荣波,王亚杰,黄孝喜,等.基于多算法融合的移动通信客户流失预测模型[J].计算机技术与发展,2018,28(08):152.[doi:10.3969/ j. issn.1673-629X.2018.08.032]
WANG Rong-bo,WANG Ya-jie,HUANG Xiao-xi,et al.Customer Churn Prediction Model of Mobile Communication Based on Multi-algorithm Fusion[J].,2018,28(02):152.[doi:10.3969/ j. issn.1673-629X.2018.08.032]
[3]郭蕾蕾,俞 璐,段国仑,等.基于 AP 聚类的多特征融合方法[J].计算机技术与发展,2019,29(08):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 009]
GUO Lei-lei,YU Lu,DUAN Guo-lun,et al.A Multi-feature Fusion Method Based on AP Clustering[J].,2019,29(02):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 009]
[4]马文斌,夏国恩.基于深度神经网络的客户流失预测模型[J].计算机技术与发展,2019,29(09):76.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 015]
MA Wen-bin,XIA Guo-en.Customer Churn Prediction Model Based on Deep Neural Network[J].,2019,29(02):76.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 015]
[5]安计勇,闫子骥.基于半监督学习的蛋白质相互作用预测模型[J].计算机技术与发展,2021,31(07):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 002]
AN Ji-yong,YAN Zi-ji.Prediction Model of Protein-protein Interactions Based on Semi-supervised Learning[J].,2021,31(02):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 002]
[6]利向晴,夏国恩,张显全,等.基于深度神经网络权重集成的客户流失预测[J].计算机技术与发展,2021,31(10):18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 004]
LI Xiang-qing,XIA Guo-en,ZHANG Xian-quan,et al.Customer Churn Prediction Based on Deep Neural Network Weight Ensemble[J].,2021,31(02):18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 004]