[1]焦 亮,张太红*.基于深度学习身份证鉴别与信息检测方法研究[J].计算机技术与发展,2020,30(12):203-209.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 036]
 JIAO Liang,ZHANG Tai-hong*.Research on Identity Card Identification and Information Detection Based on Deep Learning[J].,2020,30(12):203-209.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 036]
点击复制

基于深度学习身份证鉴别与信息检测方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年12期
页码:
203-209
栏目:
应用开发研究
出版日期:
2020-12-10

文章信息/Info

Title:
Research on Identity Card Identification and Information Detection Based on Deep Learning
文章编号:
1673-629X(2020)12-0203-07
作者:
焦 亮张太红*
新疆农业大学 计算机与信息工程学院,新疆 乌鲁木齐 830001
Author(s):
JIAO LiangZHANG Tai-hong*
School of Computer and Information Engineering,Xinjiang Agricultural University,Urumqi 830001,China
关键词:
深度学习残差网络身份证鉴别场景文本检测信息检测
Keywords:
deep learningresidual networkID identificationscene text detectioninformation detection
分类号:
TP183
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 12. 036
摘要:
身份证信息检测成为身份证信息识别任务中的关键步骤,将深度学习中的检测算法应用于身份证文本信息检测研究。 将身份证信息检测分为两部分,第一部分提出身份证照片鉴别网络,主要利用残差网络 Resnet 在身份证数据集下训练出适应于身份证照片鉴别的模型,实现身份证照片的鉴别,并且针对三种不同网络层数的 Resnet 网络进行训练,并对三种模型进行测试得到三种测试结果, 得到三种不同准确率的模型;第二部分进行 CTPN 身份证文本信息检测研究,针对第一部分鉴别正确的身份证照片进行身份证图片文本信息检测,将 CTPN 网络在身份证数据集下训练出适应于身份证信息检测的模型,从而完成身份证信息的文本检测任务,并描出文本信息检测框。 实验结果表明可以检测出身份证版面上相对应的文本信息并成功描出文本检测框。
Abstract:
ID card information detection has become a key step in ID card information identification task. The detection algorithm of deep learning is applied to ID card text information detection research. ID information detection can be divided into two parts. In the first part,ID card photo identification network is put forward. A model suitable for ID card photo identification is trained by using residual network Resnet under ID card data set to realize ID card photo identification. In addition,the Resnet network with three different network layers is trained,and the three models are tested to obtain three test results and three models with different accuracy rates. In the second part,the research on ID card text information detection of CTPN is carried out. For the ID card photo identified correctly for the first part,ID card image text information detection is carried out,and a model suitable for ID card information detection is trained by CTPN network under the ID card data set,so as to complete the ID card information text detection task,and trace the text information detection box. The experiment shows that the corresponding text information on the layout of the ID card can be detected and the text detection box can be successfully traced.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(12):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(12):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(12):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(12):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(12):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(12):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(12):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(12):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(12):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(12):7.
[11]周传华,吴幸运,李 鸣.基于 WGAN 单帧人脸图像超分辨率算法[J].计算机技术与发展,2020,30(09):29.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 006]
 ZHOU Chuan-hua,WU Xing-yun,LI Ming.Single Frame Face Images Super-resolution Algorithm Based on WGAN[J].,2020,30(12):29.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 006]
[12]江佳俊,蒋 旻*,杨晓雨,等.基于注意力机制的个性化图像美学质量评估[J].计算机技术与发展,2021,31(10):56.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 010]
 JIANG Jia-jun,JIANG Min*,YANG Xiao-yu,et al.Research on Evaluation of Personalized Image Aesthetic Quality Based on Attention Mechanism[J].,2021,31(12):56.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 010]
[13]姜丽莉,黄承宁.融合注意力机制改进残差网络的表情识别方法[J].计算机技术与发展,2022,32(05):42.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 007]
 JIANG Li-li,HUANG Cheng-ning.An Expression Recognition Method Based on Fusion of Attention Mechanism and Improved Residual Network[J].,2022,32(12):42.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 007]
[14]杨朝晨,陈佳悦,邢 可,等.基于改进的 DSSD 的小目标检测算法研究[J].计算机技术与发展,2022,32(06):63.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 011]
 YANG Zhao-chen,CHEN Jia-yue,XING Ke,et al.Small Target Detection Algorithm Based on Improved DSSD[J].,2022,32(12):63.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 011]
[15]李建平,赖永倩.基于注意力机制和残差网络的视频行为识别[J].计算机技术与发展,2023,33(04):69.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 010]
 LI Jian-ping,LAI Yong-qian.Video Behavior Recognition Based on Attention Mechanism and Residual Network[J].,2023,33(12):69.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 010]
[16]张栋昱,赵 磊.融合注意力机制改进 ResNet 的人脸表情识别[J].计算机技术与发展,2023,33(05):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]
 ZHANG Dong-yu,ZHAO Lei.Improved Facial Expression Recognition in ResNet by Integrating Attention Mechanism[J].,2023,33(12):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]

更新日期/Last Update: 2020-12-10