[1]廖 艺,王友国,朱 亮.基于谱优化社区划分的双信源溯源算法[J].计算机技术与发展,2020,30(12):72-76.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 013]
 LIAO Yi,WANG You-guo,ZHU Liang.Identifying Dual Information Source with Community Partition Based on Spectral Optimization[J].,2020,30(12):72-76.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 013]
点击复制

基于谱优化社区划分的双信源溯源算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年12期
页码:
72-76
栏目:
智能、算法、系统工程
出版日期:
2020-12-10

文章信息/Info

Title:
Identifying Dual Information Source with Community Partition Based on Spectral Optimization
文章编号:
1673-629X(2020)12-0072-05
作者:
廖 艺1王友国1朱 亮2
1. 南京邮电大学 理学院,江苏 南京 210046; 2. 南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
LIAO Yi1WANG You-guo1ZHU Liang2
1. School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210046,China; 2. School of Telecommunications & Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
社交网络社区划分谱优化溯源谣言中心性
Keywords:
social networkscommunity divisionspectrum optimizationsource traceability rumor centrality
分类号:
TP39
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 12. 013
摘要:
在线社交网络的飞速发展给人们带来便捷服务的同时也给谣言的肆意传播提供有利的平台,若不加以制止,将会严重扰乱社会秩序。 因此,如何快速准确地识别谣言源具有重要的实际意义。 考虑到社交网络的社区结构特性,即社区内节点连接紧密,社区间节点连接松散,通过分析扩散快照和网络拓扑结构,提出一种结合社区划分的谣言溯源算法。在模块度的社区划分算法的基础上,基于优化的谱分析方法将感染图划分成两个社区,然后运用谣言中心性的溯源算法在两个社区内分别进行单信源溯源,将双信源溯源问题近似分解为两个独立的单一信源溯源问题。 为验证该算法的有效性和准确性, 对比不同的网络拓扑结构和不同的中心性估计量,仿真实验结果表明该算法能够快速有效地识别谣言源。
Abstract:
The rapid development of online social networks not only brings convenient services to people,but also provides a favorable platform for the rampant spread of rumors.If the rumor spreads wantonly,   it will seriously disrupt social order. Therefore,how to quickly and accurately identify the rumor source has important practical significance. Considering the characteristics of the community structure    of social networks,that is, the nodes within the community are closely connected,while the nodes between the communities are loosely connected. Through analyzing infection snapshot and network topology, a rumor identifying algorithm based on community partition is proposed. On the basic of the modular community division algorithm,the infection graph is divided into two communities based on the optimized spectral analysis method, and then the rumor centrality identifying algorithm is used to identify single source in the two communities respectively. The problem of identifying dual informa-tion source is approximately decomposed into two independent single source traceability problems. To verify the effectiveness and accuracy of the algorithm, comparing different network topologies and different centrality estimators,simulation results show that the proposed algorithm can quickly and effectively identify the source of rumors.

相似文献/References:

[1]王硕 王新华 刘婧 刘永.一种基于社区划分的数据分发方法[J].计算机技术与发展,2011,(10):210.
 WANG Shuo,WANG Xin-hua,LIU Jing,et al.A Data Forwarding Method Based on Community Division[J].,2011,(12):210.
[2]李桃陶,周斌,王忠振. 基于社交网络的图数据挖掘应用研究[J].计算机技术与发展,2014,24(10):6.
 LI Tao-tao,ZHOU Bin,WANG Zhong-zhen. Research on Graph Data Mining Application Based on Social Network[J].,2014,24(12):6.
[3]张付霞,蒋朝惠. 基于DSNPP算法的社交网络隐私保护方法[J].计算机技术与发展,2015,25(08):152.
 ZHANG Fu-xia,JIANG Chao-hui. Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm[J].,2015,25(12):152.
[4]陈思憬,骆冰清,孙知信.基于混合好友路径信任度的社交好友推荐算法[J].计算机技术与发展,2018,28(02):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
 CHEN Si-jing,LUO Bing-qing,SUN Zhixin.Social Friend Recommendation Algorithm Based on Trust of Paths between Mixed Friends[J].,2018,28(12):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
[5]李梦洁,邵曦.基于文本属性的微博用户相似度研究[J].计算机技术与发展,2018,28(05):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
 LI Meng-jie,SHAO Xi. Research on Micro-blog User Similarity Based on Text Similarity[J].,2018,28(12):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
[6]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(12):31.
[7]余莎莎[],王友国[],朱亮[]. 基于SIR社交网络中商业谣言传播研究[J].计算机技术与发展,2016,26(11):195.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Research on Online Business Rumors Transmission Based on an Improved SIR Model[J].,2016,26(12):195.
[8]余莎莎[],王友国[],朱亮[]. 基于网络博弈论的谣言扩散建模研究[J].计算机技术与发展,2017,27(04):6.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Investigation on Rumor Diffusion Modeling with Network Game Theory[J].,2017,27(12):6.
[9]万新贵,李玲娟. 基于结构与属性的社区划分方法[J].计算机技术与发展,2017,27(08):97.
 WAN Xin-gui,LI Ling-juan. Community Division Method with Structure and Attribute[J].,2017,27(12):97.
[10]付明明,余莎莎,应志领. 在线社交网络的双谣言模型研究[J].计算机技术与发展,2017,27(09):53.
 FU Ming-ming,YU Sha-sha,YING Zhi-ling. Research on Double Rumor Model in Online Social Network[J].,2017,27(12):53.

更新日期/Last Update: 2020-12-10