[1]付倩倩,李 昂.一种改进的卷积神经网络的表情识别算法[J].计算机技术与发展,2020,30(11):80-83.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
 FU Qian-qian,LI Ang.An Improved Facial Expression Recognition Technology Based on Convolutional Neural Network[J].,2020,30(11):80-83.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
点击复制

一种改进的卷积神经网络的表情识别算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年11期
页码:
80-83
栏目:
智能、算法、系统工程
出版日期:
2020-11-10

文章信息/Info

Title:
An Improved Facial Expression Recognition Technology Based on Convolutional Neural Network
文章编号:
1673-629X(2020)11-0080-04
作者:
付倩倩1李 昂23
1. 武汉邮电科学研究院,湖北 武汉 430074; 2. 南京邮电大学 通信学院,江苏 南京 210003; 3. 南京理工大学紫金学院,江苏 南京 210023
Author(s):
FU Qian-qian1LI Ang23
1. Wuhan Institute of Posts and Telecommunications,Wuhan 430074,China; 2. School of Telecommunications & Information Engineering,Nanjing University of Posts and Telecommunications, Nanjing 210003,China; 3. Nanjing University of Science and Technology Zijin College,Nanjing 210023,China
关键词:
人脸表情识别智能化人机交互深度学习卷积神经网络
Keywords:
facial expression recognitionintelligent human-computer interactiondeep learningconvolutional neural network
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 11. 015
摘要:
随着计算机视觉领域的发展,智能化人机交互技术越来越受人们的重视。 作为最直接、最有效的情感识别方式, 人脸表情识别现已是人机交互领域研究的一大热点和难点。 由于人脸识别容易受到光照、旋转、遮挡等复杂因素的影响, 传统的人脸识别方法的准确度会大大减少。 为了使机器能够快速准确地感应人脸表情, 提出以卷积神经网络(convolutional neural network,CNN)来构建表情识别框架,将传统的人工神经网络和深度学习(deep learning,DL)技术结合起来,利用经典的卷积神经网络模型进行分析。 将表情分为愤怒、惊讶、高兴、悲伤、恐惧五大类对不同的性别进行识别与分析。 结果表明,与传统的表情识别方法相比,该方法有较好的识别效率和时效性,从而可以大大提高人机交互运用的体验感。
Abstract:
With the development of computer vision,intelligent human-computer interaction technology has been paid more and more attention. As the most direct and effective emotion recognition method, facial expression recognition has become a hot and difficult issue in the field of human-computer interaction. Because face recognition is easily affected by complex factors such? ? ? ?as illumination,rotation and occlusion,the accuracy of traditional face recognition methods will be greatly reduced. In order to make the machine can rapidly and accurately induction facial expressions, we put forward to use convolution neural network (CNN) to build a facial expression recognition framework. Combining traditional artificial neural network and deep learning? ? ? ? ?(DL),we use the classical convolution neural network model to analyze. Expressions are classified into anger,surprise,happiness,sadness and fear to identify and analyze different genders. The results show that this method has better recognition efficiency and timeliness than the traditional expression recognition method,which can greatly improve the experience of human-computer interaction.

相似文献/References:

[1]潘峥嵘,贺秀伟.人脸表情识别在智能机器人中的应用研究[J].计算机技术与发展,2018,28(02):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
 PAN Zheng-rong,HE Xiu-wei.Research on Application of Facial Expression Recognition in Intelligent Robot[J].,2018,28(11):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
[2]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(11):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[3]张雪梅,公维宾,邬建志,等.基于纹理特征融合的人脸表情识别[J].计算机技术与发展,2020,30(03):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]
 ZHANG Xue-mei,GONG Wei-bin,WU Jian-zhi,et al.Facial Expression Recognition Based on Texture Feature Fusion[J].,2020,30(11):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]
[4]王 珏,潘沛生.基于超分辨率重建的低分辨率表情识别的研究[J].计算机技术与发展,2021,31(07):47.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 008]
 WANG Jue,PAN Pei-sheng.Research on Low-resolution Facial Expression Recognition Based on Super-resolution Reconstruction[J].,2021,31(11):47.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 008]
[5]植炜基,刘春雨,郑婉君,等.基于生成对抗网络的人脸表情识别技术综述[J].计算机技术与发展,2021,31(增刊):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
 ZHI Wei-ji,LIU Chun-yu,ZHENG Wan-jun,et al.Survey of Facial Expression Recognition Technology Based onGenerative Adversarial Network[J].,2021,31(11):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
[6]吕 鹏,单剑锋.基于多特征融合的人脸表情识别算法[J].计算机技术与发展,2022,32(10):151.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]
 LYU Peng,SHAN Jian-feng.Facial Expression Recognition Algorithm Based on Multi-feature Fusion[J].,2022,32(11):151.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]
[7]叶耀光,陈宗楠,陈丽群,等.基于通道注意的可变形金字塔表情识别网络[J].计算机技术与发展,2022,32(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 010]
 YE Yao-guang,CHEN Zong-nan,CHEN Li-qun,et al.Channel-attention-based Deformable Pyramid Network for Facial Expression Recognition[J].,2022,32(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 010]
[8]李 飞,陈 瑞,童 莹,等.基于增强特征和注意力机制的视频表情识别[J].计算机技术与发展,2022,32(11):183.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 027]
 LI Fei,CHEN Rui,TONG Ying,et al.Video Facial Expression Recognition Based on ECNN-SA[J].,2022,32(11):183.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 027]
[9]王 彬,徐 杨*,石 进,等.多分支精简双线性池化的人脸表情识别[J].计算机技术与发展,2023,33(03):27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 005]
 WANG Bin,XU Yang*,SHI Jin,et al.Multi-branch Compact Bilinear Pooling for Facial Expression Recognition[J].,2023,33(11):27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 005]
[10]张栋昱,赵 磊.融合注意力机制改进 ResNet 的人脸表情识别[J].计算机技术与发展,2023,33(05):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]
 ZHANG Dong-yu,ZHAO Lei.Improved Facial Expression Recognition in ResNet by Integrating Attention Mechanism[J].,2023,33(11):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]

更新日期/Last Update: 2020-11-10