[1]张泽宇,郭 斌,张太红*.基于 DCNN 的马匹图像分割算法研究[J].计算机技术与发展,2020,30(10):210-215.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
 ZHANG Ze-yu,GUO Bin,ZHANG Tai-hong.Research on Horse Image Segmentation Algorithm Based on DCNN[J].,2020,30(10):210-215.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
点击复制

基于 DCNN 的马匹图像分割算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年10期
页码:
210-215
栏目:
应用开发研究
出版日期:
2020-10-10

文章信息/Info

Title:
Research on Horse Image Segmentation Algorithm Based on DCNN
文章编号:
1673-629X(2020)10-0210-06
作者:
张泽宇郭 斌张太红*
新疆农业大学 计算机与信息工程学院,新疆 乌鲁木齐 830052
Author(s):
ZHANG Ze-yuGUO BinZHANG Tai-hong
School of Computer and Information Engineering,Xinjiang Agricultural University,Urumqi 830052,China
关键词:
马图像分割语义分割条件随机场深度分离卷积迁移学习
Keywords:
horse image segmentationsemantic segmentationconditional random fielddepthwise separable convolutiontransfer learn鄄 ing
分类号:
TP183
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 10. 037
文献标志码:
A
摘要:
随着深度学习的发展,卷积神经网络被用于解决各类计算机视觉问题。 物体的分割是图像处理的基础,传统的分 割算法在特定强光噪声场景下对图片的理解能力及工作效率欠佳。 针对传统马匹图像分割算法中存在的分割边缘不清 晰、强光照射下马匹轮廓分割模糊,以及分割前需要进行手工标注等问题,提出一种基于全卷积神经网络并加入条件随机 场的马匹图像分割算法。 建立马匹图像数据集进行训练测试,网络中加入带有空洞卷积的空间金字塔池化模型(ASPP)、 空洞卷积与深度分离卷积使得网络在参数不变的情况下扩大感受野从而有效地分割出马匹。 在深度卷积神经网络 (DCNN)模型上进行迁移学习,并加入全连接条件随机场(CRF)优化分割出来的马匹边缘轮廓。 实验结果表明,该方法在 分割精度上优于传统的马匹图像分割算法,平均交并比(MIOU)达到了 92. 8% 。
Abstract:
With the development of deep learning,convolutional neural network is used to solve many computer vision problems. Image segmentation is the basis of all image processing. Traditional segmentation algorithm has poor understanding of images and work inefficiency under certain high-light noise scene. In view of the problems existing in the traditional horse image segmentation algorithm, such as unclear segmentation edge, fuzzy segmentation of horse contour under strong illumination, and manual annotation before segmentation,we propose a horse image segmentation algorithm based on full convolutional neural network and conditional random field. By establishing horse image dataset to train and adding the atrous spatial pyramid pooling ( ASPP), the atrous convolution and the depthwise separable convolution,it makes the full convolutional neural network model enable the network to expand the receptive field with the parameters unchanged and segment the horse image effectively. The horses are migrated on the deep convolutional neural network (DCNN),and the horse edge contours segmented are added by the fully connected condition random field. The experiment shows that the proposed method is superior to the traditional horse image segmentation algorithm in terms of segmentation accuracy. The mean intersection over union (MIOU) reaches 92. 8% .

相似文献/References:

[1]龚 安,赵 莉,姚鑫杰.基于改进的 U-Net 网络模型的气胸分割算法[J].计算机技术与发展,2021,31(10):173.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 029]
 GONG An,ZHAO Li,YAO Xin-jie.Pneumothorax Segmentation Algorithm Based on Improved U-Net Network Model[J].,2021,31(10):173.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 029]
[2]宋 宇,王小瑀,梁 超,等.基于多级特征图联合上采样的实时语义分割[J].计算机技术与发展,2022,32(02):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 013]
 SONG Yu,WANG Xiao-yu,LIANG Chao,et al.Real-time Semantic Segmentation Based on Multi-scale Feature Map Joint Pyramid Upsamping[J].,2022,32(10):82.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 013]
[3]姚芷馨,张太红,赵昀杰.基于卷积神经网络的多模型交通场景识别研究[J].计算机技术与发展,2022,32(07):93.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 016]
 YAO Zhi-xin,ZHANG Tai-hong,ZHAO Yun-jie.Research on Multi-model Traffic Scene Recognition Based on Convolution Neural Network[J].,2022,32(10):93.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 016]
[4]张 鑫,陈 黎.基于多尺度特征融合的消防车通道占用检测[J].计算机技术与发展,2022,32(10):51.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 009]
 ZHANG Xin,CHEN Li.Fire Truck Passages Occupancy Detection Based on Multi-scale Feature Fusion[J].,2022,32(10):51.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 009]
[5]李松宇.基于 HED—UNet 遥感图像建筑物语义分割[J].计算机技术与发展,2022,32(S2):58.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 010]
 LI Song-yu.Semantic Segmentation of Buildings in Remote Sensing Images Based on HED-UNet[J].,2022,32(10):58.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 010]
[6]杜睿山,宋健辉,孟令东.基于注意力机制的岩石铸体薄片轻量化分割[J].计算机技术与发展,2023,33(10):128.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 020]
 DU Rui-shan,SONG Jian-hui,MENG Ling-dong.Lightweight Segmentation of Rock Casting Sheet Based on Attention Mechanism[J].,2023,33(10):128.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 020]
[7]刘贤梅,刘鹏飞,贾 迪,等.基于多特征融合的城市场景三维点云语义分割[J].计算机技术与发展,2023,33(11):78.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 012]
 LIU Xian-mei,LIU Peng-fei,JIA Di,et al.3D Point Cloud Semantic Segmentation of Urban Scene Based on Multi-feature Fusion[J].,2023,33(10):78.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 012]
[8]陈世婕,王卫星*,彭 莉.基于多尺度网络的苗绣绣片纹样分割算法研究[J].计算机技术与发展,2023,33(11):149.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 022]
 CHEN Shi-jie,WANG Wei-xing*,PENG Li.Research on Miao Embroidery Pattern Segmentation Algorithm Based on Multi-scale Network[J].,2023,33(10):149.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 022]
[9]曾碧卿,杨 睿,李一娴,等.基于卷积神经网络的零件圆检测方法[J].计算机技术与发展,2023,33(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 010]
 ZENG Bi-qing,YANG Rui,LI Yi-xian,et al.Part Circle Detection Method Based on Convolutional Neural Network[J].,2023,33(10):64.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 010]
[10]张 婧,张 策*,张 茹,等.图像分割述评:基本概貌、典型算法及比较分析[J].计算机技术与发展,2024,34(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 001]
 ZHANG Jing,ZHANG Ce*,ZHANG Ru,et al.Review of Image Segmentation:Basic Overview,Typical Algorithms and Comparative Analysis[J].,2024,34(10):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 001]

更新日期/Last Update: 2020-10-10