[1]林天华,张倩倩,祁旭阳,等.证券大数据分析研究[J].计算机技术与发展,2020,30(10):179-186.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 032]
 LIN Tian-hua,ZHANG Qian-qian,QI Xu-yang,et al.Research and Analysis of Securities Big Data[J].,2020,30(10):179-186.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 032]
点击复制

证券大数据分析研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年10期
页码:
179-186
栏目:
应用开发研究
出版日期:
2020-10-10

文章信息/Info

Title:
Research and Analysis of Securities Big Data
文章编号:
1673-629X(2020)10-0179-08
作者:
林天华1张倩倩1祁旭阳1赵 霞2
1. 河北经贸大学 信息技术学院,河北 石家庄 050061; 2. 河北经贸大学 经管实验中心,河北 石家庄 050061
Author(s):
LIN Tian-hua1ZHANG Qian-qian1QI Xu-yang1ZHAO Xia2
1. School of Information Technology,Hebei University of Economics and Business,Shijiazhuang 050061,China; 2. Economic Management Experiment Center,Hebei University of Economics and Business,Shijiazhuang 050061,China
关键词:
证券大数据数据分析机器学习交易监管预测分析
Keywords:
securities big datadata analysismachine learningtransaction regulationprediction analysis
分类号:
TP39
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 10. 032
摘要:
将大数据技术与机器学习应用到证券领域,探索国内证券行业发展规律是证券行业科技创新的重要举措。 介绍了证券大数据的概念,总结了大数据技术在证券领域的应用,包括交易监察、财务分析、恐慌指数分析、舆论热度分析、个性化服务、预测与量化投资等。 分析了目前处理证券大数据的主要算法模型,包括交易监管算法、财务分析算法、恐慌指数分析算法、情感分析算法以及预测与量化投资算法模型。 并对其中的机器学习预测算法,如支持向量机、卷积神经网络、贝叶斯神经网络、遗传算法对 BP 神经网络的优化等进行详细论述,对传统时序预测模型和基于机器学习的预测模型进行了优劣性对比。 最后对证券领域的大数据应用进行了展望和总结,大数据技术在证券领域的应用日益广泛,采用机器学习算法对证券行情进行预测是研究方向和热点。
Abstract:
Applying big data technology and machine learning to the field of securities and exploring the development law of domestic securities industry is an important measure of science and technology innovation in the securities industry. We introduce the concept of securities big data and summarize the application of big data technology in the securities field,including transaction supervision,financial analysis,panic index analysis,public opinion heat analysis,personalized service,prediction and quantitative investment,etc. We analyze the main algorithm models of dealing with big data of securities,including transaction supervision algorithm,financial analysis algorithm,panic index analysis algorithm, emotion analysis algorithm, pred-iction and quantitative investment algorithm. And the machine learning prediction algorithm,such as support vector machine,convolution neural network,Bayesian neural network,genetic algorithm optimization of BP neural network,etc. are discussed in detail,and the advantages and disadvantages of the traditional time series prediction model and the prediction model based on machine learning are compared. Finally,the application of big data in the field of securities is prospected and summarized. The application of big data technology in the field of securities is more and more extensive. It is a research direction and hot spot to use machine learning algorithm to predict the stock market.

相似文献/References:

[1]丁剑洁 鱼滨 侯红 钟欣.软件度量中的数据分析技术[J].计算机技术与发展,2006,(02):191.
 DING Jian-jie,YU Bin,HOU Hong,et al.The Data Analysis Techniques in Software Measurement[J].,2006,(10):191.
[2]易定.数据分析需求与实现[J].计算机技术与发展,2006,(09):112.
 YI Ding.Requirement and Implementation of Data Analysis[J].,2006,(10):112.
[3]方世林 陈顺平 汤飞球[].主动防御技术在权限控制中的应用研究[J].计算机技术与发展,2010,(11):150.
 FANG Shi-lin,CHEN Shun-ping,TANG Fei-qiu.Applied Research of Active Defense Technology in Access Control[J].,2010,(10):150.
[4]张彤 吴世荣.基于SNMP计算机网络流量监控系统研究[J].计算机技术与发展,2011,(01):88.
 ZHANG Tong,WU Shi-rong.Research on Computer Network Traffic Monitoring System Based on SNMP[J].,2011,(10):88.
[5]钟秀玉.基于Apriori算法的网络取证设计[J].计算机技术与发展,2011,(05):158.
 ZHONG Xiu-yu.Design of Network Forensics Based on Apriori Algorithm[J].,2011,(10):158.
[6]楚丹琪,李睿智,高洪皓,等.基于智慧实验室的安全事故分析与预测[J].计算机技术与发展,2018,28(05):107.[doi:10.3969/ j. issn.1673-629X.2018.05.025]
 CHU Dan-qi,LI Rui-zhi,GAO Hong-hao,et al.Analysis and Prediction of Safety Accidents Based on Smart Laboratory[J].,2018,28(10):107.[doi:10.3969/ j. issn.1673-629X.2018.05.025]
[7]丁仲全,侯芳,张航,等.物联网环境下楼宇逃生系统设计实现[J].计算机技术与发展,2018,28(05):168.[doi:10.3969/ j. issn.1673-629X.2018.05.038]
 DING Zhong-quan,HOU Fang,ZHANG Hang,et al.Design and Implementation of Emergency Evacuation System in Building under Internet of Things[J].,2018,28(10):168.[doi:10.3969/ j. issn.1673-629X.2018.05.038]
[8]徐建,吴烨虹,程晶晶. 移动僵尸网络中数据流的采集与分析[J].计算机技术与发展,2016,26(11):101.
 XU Jian,WU Ye-hong,CHENG Jing-jing. Collection and Analysis of Data Flow in Mobile Botnet[J].,2016,26(10):101.
[9]张利利,胡文东,马进. TeeChart控件在色觉检查系统中的应用[J].计算机技术与发展,2017,27(10):136.
 ZHANG Li-li,HU Wen-dong,MA Jin. Application of TeeChart Control in Chromatoptometry System[J].,2017,27(10):136.
[10]柳琳琳[],李朋洲[],李琦[],等. 核级设备鉴定试验数据库的设计与研究[J].计算机技术与发展,2017,27(10):140.
 LIU Lin-lin[,LI Peng-zhou[],LI Qi[],et al. Design and Research of Qualification of Components in Nuclear-power Level Database[J].,2017,27(10):140.

更新日期/Last Update: 2020-10-10