[1]何 松,孙 静,郭乐江,等.基于激光 SLAM 和深度学习的语义地图构建[J].计算机技术与发展,2020,30(09):88-94.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
 HE Song,SUN Jing,GUO Le-jiang,et al.Semantic Mapping Based on Laser SLAM and Deep Learning[J].,2020,30(09):88-94.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 016]
点击复制

基于激光 SLAM 和深度学习的语义地图构建()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年09期
页码:
88-94
栏目:
智能、算法、系统工程
出版日期:
2020-09-10

文章信息/Info

Title:
Semantic Mapping Based on Laser SLAM and Deep Learning
文章编号:
1673-629X(2020)09-0088-07
作者:
何 松1孙 静2郭乐江1陈 梁3
1. 空军预警学院,湖北 武汉 430019; 2. 空军通信士官学校,辽宁 大连 116100; 3. 武汉大学 计算机学院,湖北 武汉 430072
Author(s):
HE Song1SUN Jing2GUO Le-jiang1CHEN Liang3
1. Air Force Early Warning Academy,Wuhan 430019,China; 2. Air Force Communication Sergeant School,Dalian 116100,China; 3. School of Computer Science,Wuhan University,Wuhan 430072,China
关键词:
移动机器人同步定位与地图构建语义信息深度学习目标检测语义地图
Keywords:
mobile robotsimultaneous localization and mappingsemantic informationdeep learningtarget detectionsemantic map
分类号:
TP24
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 09. 016
摘要:
基于语义地图的自主导航移动机器人在空间勘探、危险物品搜索、自动驾驶等领域有着广阔的应用前景。为使移动机器人更好地完成相关复杂任务,针对传统SLAM(simultane-ous localization and mapping)地图不够精细、语义信息缺失的问题,提出一种多传感器融合的语义地图构建技术。 综合激光 SLAM 精度高和视觉信息纹理丰富的特点,选取基于 ROS(robot operating system)系统的移动机器人平台,研究基于里程计、惯性传感单元(IMU)和激光雷达多源传感器融合进行即时定位与创建地图,将基于深度学习的目标检测算法移植到 ROS 系统中,结合机器人深度摄像头获取的图像信息实现目标语义识别,并结合深度信息进行位置解算实现目标定位和地图语义标注。 通过机器人多目标语义添加实验和移动过程中的增量式地图构建与实时同步添加语义信息实验,验证该系统能实时地创建语义地图。
Abstract:
The mobile robot based on semantic map has broad application prospects in the fields of exploration,search of dangerous goods and automatic driving. Aiming at the problem that traditional SLAM does not have semantic information, in order to complete the complex tasks better, a semantic map construction technology based on multi-sensor fusion is proposed. The mobile robot platform based on ROS (robot operating system) is selected, and the real-time positioning and mapping based on the integration of odometer,inertial sensing unit (IMU) and lidar multi-source sensor is studied,and the target detection algorithm based on deep learning is transplanted. In the ROS,the target semantic recognition is realized by combining the image information acquired by the robot depth camera,and the target information and the map semantic annotation are realized by combining the depth information. Through the robot multi-target semantic addition experiment and the incremental map construction experiment,it is verified that the system can create a semantic map in real time.

相似文献/References:

[1]王娜 马昕.基于细化算法的移动机器人拓扑地图创建[J].计算机技术与发展,2009,(10):11.
 WANG Na,MA Xin.Mobile Robot Topological Map Building Based on Thinning Algorithm[J].,2009,(09):11.
[2]范莉丽 王奇志.改进的生物激励神经网络的机器人路径规划[J].计算机技术与发展,2006,(04):19.
 FAN Li-li,WANG Qi-zhi.Robot Path Planning of Modified Biologically Inspired Neural Networks[J].,2006,(09):19.
[3]王肖青 王奇志.传统人工势场的改进[J].计算机技术与发展,2006,(04):96.
 WANG Xiao-qing,WANG Qi-zhi.An Evolutionary Method of Traditional Artificial Potential Field[J].,2006,(09):96.
[4]吕凌 曾碧.基于评估和分工合作并行蚁群机器人路径规划[J].计算机技术与发展,2011,(09):10.
 Lü Ling,ZENG Bi.Path Planning for Robot Introduction Parallel Ant Colony Algorithm Based on Division of Labor and Assessment[J].,2011,(09):10.
[5]张璐 张国良 张维平 敬斌.基于粒子群三次样条优化的局部路径规划方法[J].计算机技术与发展,2012,(11):145.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Local Path Planning Algorithm Based on Particle Swarm Optimization of Cubic Splines[J].,2012,(09):145.
[6]徐丁,朱擎飞,叶晓东.遗传算法在移动机器人路径规划中的应用[J].计算机技术与发展,2013,(11):112.
 XU Ding,ZHU Qing-fei,YE Xiao-dong.Application of Genetic Algorithm in Mobile Robot Path Planning[J].,2013,(09):112.
[7]张俊溪,米国际,王鑫,等.基于进化算法和模糊控制的机器人路径规划[J].计算机技术与发展,2018,28(06):49.[doi:10.3969/ j. issn.1673-629X.2018.06.011]
 ZHANG Jun-xi,MI Guo-ji,WANG Xin,et al.Research on Path Planning of Robot Based on Evolutionary Algorithm and Fuzzy Control Algorithm[J].,2018,28(09):49.[doi:10.3969/ j. issn.1673-629X.2018.06.011]
[8]李登峰,杨 曦.基于改进智能水滴算法的移动机器人路径规划[J].计算机技术与发展,2019,29(12):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]
 LI Deng-feng,YANG Xi.Path Planning of Mobile Robot Based on Improved Intelligent Water Drop Algorithm[J].,2019,29(09):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]
[9]于 翔,周 波.基于多模态融合的室内人体跟踪技术研究[J].计算机技术与发展,2023,33(02):38.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 006]
 YU Xiang,ZHOU Bo.Research on Indoor Human Tracking Technology Based on Multi-modal Fusion[J].,2023,33(09):38.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 006]
[10]章佳琪,肖 建 *.DID-YOLO:一种适用于嵌入式设备的移动机器人目标检测算法[J].计算机技术与发展,2023,33(10):8.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 002]
 ZHANG Jia-qi,XIAO Jian *.DID-YOLO:A Mobile Robot Target Detection Algorithm for Embedded Devices[J].,2023,33(09):8.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 002]

更新日期/Last Update: 2020-09-10