[1]程 涛,崔宗敏,喻 静.一种用于视频推荐的基于 LDA 的深度学习模型[J].计算机技术与发展,2020,30(08):86-90.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 014]
 CHENG Tao,CUI Zong-min,YU Jing.A LDA-based Topic Attribute-aware in-Depth Learning Model for Video Recommendation[J].,2020,30(08):86-90.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 014]
点击复制

一种用于视频推荐的基于 LDA 的深度学习模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年08期
页码:
86-90
栏目:
智能、算法、系统工程
出版日期:
2020-08-10

文章信息/Info

Title:
A LDA-based Topic Attribute-aware in-Depth Learning Model for Video Recommendation
文章编号:
1673-629X(2020)08-0086-05
作者:
程 涛崔宗敏喻 静
九江学院 信息科学与技术学院,江西 九江 332005
Author(s):
CHENG TaoCUI Zong-minYU Jing
School of Information Science and Technology,Jiujiang University,Jiujiang 332005,China
关键词:
LDA 主题模型深度学习隐式反馈视频推荐个性化推荐
Keywords:
LDA theme modeldeep learningimplicit feedbackvideo recommendationpersonalized recommendation
分类号:
TP391.5
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 08. 014
摘要:
随着视频产业的发展,大量的视频已沉积在信息海洋中,为了缓解这种现象,越来越多的推荐算法开始应用于个性化视频推荐。 然而目前的推荐算法都是以协同过滤为自主, 都只注重通过评分矩阵提高捕捉用户与视频的低阶的交互, 忽略了用户兴趣与视频属性的高阶关联。 在这种背景下, 文中通过 LDA 主题模型预测用户兴趣主题,引用干扰词典和关键词典来提高 LDA 模型对视频文本聚类的准确率,然后利用最近提出的神经协同框架建模用户兴趣和视频属性的高阶关联,把 LDA 模型与深度学习相结合提出了一种新的模型 LIVR 用于视频推荐,最后在通过网络爬虫爬取的数据集上验证并对实验结果进行分析。 结果表明,该模型的 Top-N 推荐准确率较常见的几个深度学习模型提高了约 1.9 个百分点。
Abstract:
With the development of video industry,a large amount of videos have been deposited in the information ocean. In order to alleviate this phenome-non, more and more recommendation algorithms have begun to be applied to personalized video recommendation. However,the current recomme-ndation algorithms are all based on collaborative filtering. They only focus on improving the low-level interaction between users and videos through the scoring matrix, ignoring the high - order association between user interests and video attributes. In this context, we use the LDA topic model to predict user interest topics, cite interference dictionaries and key dictionaries to improve the accuracy of LDA model clustering of video texts, and then use the recently proposed neural collaboration framework to model high-order associations of user interests and video attributes. Combined with LDA model and deep learning, a new model LIVR is proposed for video recommendation. Finally, it is verified on the dataset crawled by the web crawler and the experimental results are analyzed. The results show that the Top-N recommendation accuracy of the model is about 1. 9 per-centage points higher than the common deep learning models.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(08):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(08):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(08):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(08):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(08):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(08):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(08):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(08):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(08):7.
[11]冼广铭,王鲁栋,曾碧卿,等.基于 LDA 和 BiGRU 的文本分类[J].计算机技术与发展,2022,32(04):15.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 003]
 XIAN Guang-ming,WANG Lu-dong,ZENG Bi-qing,et al.Text Classification Based on LDA and BiGRU[J].,2022,32(08):15.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 003]

更新日期/Last Update: 2020-08-10