[1]刘小红.基于预处理图像压缩的病害诊断应用研究[J].计算机技术与发展,2020,30(07):215-220.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 044]
 LIU Xiao-hong.Research on Disease Diagnosis Based on Image Preprocessing and Compression[J].,2020,30(07):215-220.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 044]
点击复制

基于预处理图像压缩的病害诊断应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年07期
页码:
215-220
栏目:
应用开发研究
出版日期:
2020-07-10

文章信息/Info

Title:
Research on Disease Diagnosis Based on Image Preprocessing and Compression
文章编号:
1673-629X(2020)07-0215-06
作者:
刘小红
湖南信息学院,湖南 长沙 410151
Author(s):
LIU Xiao-hong
Hunan Institute of Information Technology,Changsha 410151,China
关键词:
图像预处理病害诊断OTSU 算法图像压缩Android
Keywords:
image preprocessingdisease diagnosisOTSU algorithmimage compressionAndroid
分类号:
TP3;S24
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 07. 044
摘要:
在手机移动端进行病害图像远程诊断时,因大容量图像会导致上传速度缓慢、增大远程服务端数据处理难度,影响服务端对图像识别的及时性和准确性。 针对此问题,提出基于预处理图像压缩方法,即对随时采集的图像进行适度裁剪,然后进行灰度化、自适应阈值分割并提取分割后的病斑区域,最后对病斑区域进行 JPEG 压缩即经过 DCT 变换、量化、编码等操作。 以黄瓜白粉病、斑点病等为例,在移动端进行病害诊断,实现对病害图像的预处理和压缩过程。 测试数据发现,病害图像经过预处理压缩后,在获得良好图像质量的前提下,大大减少图像数据。 结果表明,在移动端应用预处理压缩方法能加快图像上传速度,降低远程服务端图像数据处理难度,提高诊断及时性,具有较高的实用性。
Abstract:
When remote diagnosis of image disease is carried out on mobile phone, high-capacity images can slow uploading speed and increase the data processing difficulty on the remote server, and affect the timeliness and accuracy of image recognition on the server at the same time. To solve this problem, a method of image compression based on pre-processing is proposed,that is,the image collected at any time is moderately clipped,and then gray-scale and adaptive threshold segmented and extracted the lesion area. Finally,JPEG compression of the lesion area is carried out through DCT transformation, quantization, coding and other operations. Taking cucumber powdery mildew and spotted disease as xamples,the disease diagnosis operation is carried out at the mobile,and the disease image is pre-processed and compressed at the same time. The test data shows that the capacity of image data is greatly reduced under the premise of better image quality after preprocessing and compression. The results show that the application of the proposed method in the mobile can speed up image upload and reduce the difficulty of image data processing at remote server,and improve the timeliness of diagnosis with high practicability.

相似文献/References:

[1]黄鑫娟 房岩 周洁敏 刘伯扬 王占军 陶思钰.基于改进模糊熵的车牌定位方法[J].计算机技术与发展,2010,(01):189.
 HUANG Xin-juan,FANG Yan,ZHOU Jie-min,et al.A License Plate Location Method Based on Improved Fuzzy Entropy[J].,2010,(07):189.
[2]杨述斌 张阳.复杂车辆图像中的车牌快速形态定位算法[J].计算机技术与发展,2008,(06):50.
 YANG Shu-bin,ZHANG Yang.Fast Morphological Locating Algorithm of Vehicle License Plate in Complex Vehicle Images[J].,2008,(07):50.
[3]江良洲 龙凤.磨粒图像自动拼接与预处理技术研究[J].计算机技术与发展,2010,(10):250.
 JIANG Liang-zhou,LONG Feng.Wear Particle Image Mosaicing and Preprocessing Technique Research for Ferrography[J].,2010,(07):250.
[4]孟晓莉 赵安军 马光思.基于数学形态学的车牌定位研究与实现[J].计算机技术与发展,2010,(11):84.
 MENG Xiao-li,ZHAO An-jun,MA Guang-si.Car License Plate Location Research and Implementation Based on Mathematical Morphology[J].,2010,(07):84.
[5]张志佳,王博实,李雅红,等. 基于双视角的可见外壳三维重建研究[J].计算机技术与发展,2015,25(03):50.
 ZHANG Zhi-jia,WANG Bo-shi,LI Ya-hong,et al. Research on 3 D Reconstruction of Visible Hull Based on Double Perspectives[J].,2015,25(07):50.
[6]刘艳洋,曹玉东. EAN-13条形码图像的识别[J].计算机技术与发展,2015,25(06):202.
 LIU Yan-yang,CAO Yu-dong. EAN-13 Bar-code Image Recognition[J].,2015,25(07):202.
[7]陈利.基于深度学习的车牌识别系统设计[J].计算机技术与发展,2018,28(06):85.[doi:10.3969/ j. issn.1673-629X.2018.06.019]
 CHEN Li.Design of License Plate Recognition System Based on Deep Learning[J].,2018,28(07):85.[doi:10.3969/ j. issn.1673-629X.2018.06.019]
[8]李艳雪,吕芳.向日葵叶部病害图像分割方法[J].计算机技术与发展,2019,29(05):148.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 031]
 LI Yan-xue,LYU Fang.Image Segmentation Method of Sunflower Leaf Disease Image[J].,2019,29(07):148.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 031]
[9]柳胜超,王夏黎,王丽红,等.基于 Faster R-CNN 的交通警察目标检测研究[J].计算机技术与发展,2021,31(04):80.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 014]
 LIU Sheng-chao,WANG Xia-li,WANG Li-hong,et al.Research on Target Detection of Traffic Police Based on Faster R-CNN[J].,2021,31(07):80.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 014]
[10]王运峰,何 勇,田旭飞.基于 ARM 的射击训练控制系统的研究应用[J].计算机技术与发展,2021,31(10):190.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 032]
 WANG Yun-feng,HE Yong,TIAN Xu-fei.Research and Application of Control System of Live Ammunition Target Drone Based on ARM[J].,2021,31(07):190.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 032]

更新日期/Last Update: 2020-07-10