[1]张翠肖,郝杰辉,刘星宇,等.基于 CNN-BiLSTM 的中文微博立场分析研究[J].计算机技术与发展,2020,30(07):154-159.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 033]
 ZHANG Cui-xiao,HAO Jie-hui,LIU Xing-yu,et al.Research on Stance Detection in Chinise Micro-blog Based on CNN-BiLSTM[J].,2020,30(07):154-159.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 033]
点击复制

基于 CNN-BiLSTM 的中文微博立场分析研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年07期
页码:
154-159
栏目:
应用开发研究
出版日期:
2020-07-10

文章信息/Info

Title:
Research on Stance Detection in Chinise Micro-blog Based on CNN-BiLSTM
文章编号:
1673-629X(2020)07-015-06
作者:
张翠肖 郝杰辉刘星宇孙月肖
石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043
Author(s):
ZHANG Cui-xiaoHAO Jie-huiLIU Xing-yuSUN Yue-xiao
School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
关键词:
自然语言处理立场检测词向量卷积神经网络双向长短时记忆网络
Keywords:
natural language processingstance detectionword embeddingCNNBiLSTM
分类号:
TP311
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 07. 033
摘要:
随着社交网络的迅速发展,产生了大量的社交网络文本数据。 国际语义评测比赛 SemEval-2016 和自然语言处理与中文计算国际会议 NLPCC2016 均提出了针对社交网络文本进行立场检测分析的任务。 传统的立场检测任务中,研究人员主要通过构建特征工程、情感词典等来挖掘文本语义特征,但需要花费大量人力在特征选择及其设计上。 在深度学习中,长短时记忆网络 LSTM 可以获取句子的长时记忆信息,而一维卷积神经网络 CNN 能够获取文本的局部主要语义信息。文中提出一种基于词向量技术和 CNN-BiLSTM 的深度融合模型,首先利用卷积神经网络提取文本向量的局部特征,再运用双向 LSTM 网络提取文本的全局特征,解决了单卷积神经网络无法获取全局语义信息和传统循环神经网络梯度消失的问题。 在 NLPCC2016 Task4 数据集上进行试验,实验结果有效提升了文本立场分类的准确率,验证了模型的有效性。
Abstract:
With the rapid development of social network,a large number of text data of social network have been generated. The tasks of position detection and analysis for social network text are proposed in SemEval-2016 and NLPCC2016. In traditional stance detection tasks,researchers mainly mine text semantic features by constructing feature engineering and affective dictionary,but they need to spend a lot of manpower on feature selection and design. In deep learning,long short-term memory (LSTM) can acquire long-term memory information of sentences, while one-dimensional convolutional neural network (CNN) can acquire local main semantic information of text. We propose a depth integration model based on word embedding technology and CNN-BiLSTM. Firstly,the local features of text vector are extracted by convolution neural network,and then the global features of text are extracted by BiLSTM network. The problem that single convolution neural network can not obtain global semantic information and the gradient disappearance of traditional cyclic neural network is solved. Experiments on NLPCC2016 Task4 data set show that the proposed model can effectively improve the accuracy of text position classification and validate the validity of the model.

相似文献/References:

[1]陈国华 赵克 李亚涛 易帅.自然语言处理系统中的事件类名词的耦合处理[J].计算机技术与发展,2008,(06):60.
 CHEN Guo-hua,ZHAO Ke,LI Ya-tao,et al.Coupling Processing of Event Noun in NLP Systems[J].,2008,(07):60.
[2]程节华.基于FAQ的智能答疑系统中分词模块的设计[J].计算机技术与发展,2008,(07):181.
 CHENG Jie-hua.Design of Words Module in Intelligent Q/A System Based on FAQ[J].,2008,(07):181.
[3]杨欢 许威 赵克 陈余.动词属性在自然语言处理当中的研究与应用[J].计算机技术与发展,2008,(07):233.
 YANG Huan,XU Wei,ZHAO Ke,et al.Research and Application of Verb Attributes in Natural Language Processing[J].,2008,(07):233.
[4]孙超 张仰森.面向综合语言知识库的知识融合与获取研究[J].计算机技术与发展,2010,(08):25.
 SUN Chao,ZHANG Yang-sen.Research of Knowledge Integration and Obtaining Oriented Comprehensive Language Knowledge System[J].,2010,(07):25.
[5]党建 亿珍珍 赵克 殷鸿.数学领域集体词结构形式化处理研究[J].计算机技术与发展,2007,(05):121.
 DANG Jian,YI Zhen-zhen,ZHAO Ke,et al.Research of Formalization Processing for Collective Structures in Mathematics Domain[J].,2007,(07):121.
[6]江有福 郑庆华.自然语言网络答疑系统中倒排索引技术的研究[J].计算机技术与发展,2006,(02):126.
 JIANG You-fu,ZHENG Qing-hua.Research of Inverted Index in NLWAS[J].,2006,(07):126.
[7]刘亚清 张瑾 于纯妍.基于义原同现频率的汉语词义排歧系统[J].计算机技术与发展,2006,(05):184.
 LIU Ya-qing,ZHANG Jin,YU Chun-yan.A Chinese Word Sense Disambiguation System Based on Primitive CO- Occurrence Data[J].,2006,(07):184.
[8]刘政怡 李炜 吴建国.基于IMM—IME的汉字键盘输入法编程技术研究[J].计算机技术与发展,2006,(12):43.
 LIU Zheng-yi,LI Wei,WU Jian-guo.Research of Programming Technology of Chinese Input Method Based on IMM- IME[J].,2006,(07):43.
[9]赵鹏 何留进 孙凯 方薇[].基于情感计算的网络中文信息分析技术[J].计算机技术与发展,2010,(11):146.
 ZHAO Peng,HE Liu-jin,SUN Kai,et al.Analyzing Technologies of Internet Chinese Information Based on Affective Computing[J].,2010,(07):146.
[10]徐远方 李成城.基于SVM和词间特征的新词识别研究[J].计算机技术与发展,2012,(05):134.
 XU Yuan-fang,LI Cheng-cheng.Research on New Word Identification Based on SVM and Word Characteristics[J].,2012,(07):134.

更新日期/Last Update: 2020-07-10