[1]徐 伟,郑 威,钱 炜,等.一种深度学习模型的研究与应用[J].计算机技术与发展,2020,30(07):135-139.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 029]
 XU Wei,ZHENG Wei,QIAN Wei,et al.Research and Application of a Deep Learning Model[J].,2020,30(07):135-139.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 029]
点击复制

一种深度学习模型的研究与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年07期
页码:
135-139
栏目:
应用开发研究
出版日期:
2020-07-10

文章信息/Info

Title:
Research and Application of a Deep Learning Model
文章编号:
1673-629X(2020)07-0135-05
作者:
徐 伟郑 威钱 炜刘 健
江苏科技大学 电子信息学院,江苏 镇江 212000
Author(s):
XU WeiZHENG WeiQIAN WeiLIU Jian
School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212000,China
关键词:
深度学习信号与信息处理卷积神经网络QRS 波群分类
Keywords:
deep learningsignal and information processingconvolutional neural networkQRS complexclassification
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 07. 029
摘要:
深度学习作为近年来快速发展的崭新技术可以有效帮助研究目标检测和模式识别,在信号与信息处理领域成为研究热点。针对胎儿心电信号难以提取导致胎心率检测困难,设计了一种深度学习模型。 该模型使用了卷积神经网络结构, 并且结合了批量标准化和 Dropout 技术,可以在不去除母体心电信号的情况下直接检测胎儿 QRS 波群。 该方法首先在 PhysioNet 上选取母体腹部心电信号作为实验数据集,然后通过样本熵进行信号质量评估,预处理去除电力线干扰和基线漂移干扰,最后分段进行短时傅里叶变换将一维心电信号转化为二维时频图,再通过卷积神经网络进行分类。 实验结果表明,该方法可以取得较高的灵敏度(86.98%)、阳性预测值(88.35%) 和准确率(78.03%) 。 通过对比支持向量机和 BP 神经网络两种算法在相同数据集上的准确率,验证了卷积神经网络在分类性能上更具有优势。
Abstract:
Deep learning,as a new technology developed rapidly in recent years,can effectively help research target detection and pattern recognition,and has become a research hotspot in the field of signal and information processing. A deep learning model is designed to detect fetal heart rate due to the difficulty in extracting fetal ECG signals. With the convolutional neural network structure,combined with batch normalization and dropout technology,the model can be able to directly detect fetal QRS complexes without removing maternal ECG signals. In this method, maternal abdominal ECG signals are first selected as the experimental data set on the PhysioNet,then the sample entropy method is used for signal quality assessment,and power line interference and baseline drift interference are removed by preprocessing. Finally,one-dimen-sional ECG signals can be converted to two-dimensional time-frequency diagrams through short-time Fourier transform by segmenting,and then the classification is carried out by convolutional neural network. Experiment shows that the proposed method can achieve higher sensitivity (86.98%) , positive predictive value (88.35%) and accuracy (78.03%) . By comparing the accuracy of SVM and BP neural network on the same data set,it is verified that convolutional neural network has more advantages in classification performance.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(07):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(07):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(07):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(07):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(07):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(07):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(07):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(07):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(07):7.

更新日期/Last Update: 2020-07-10