[1]李雨婷.基于指数损失间隔的多标记特征选择算法[J].计算机技术与发展,2020,30(04):46-51.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 009]
 LI Yu-ting.Exponential Loss Margin Based Multi-label Feature Selection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(04):46-51.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 009]
点击复制

基于指数损失间隔的多标记特征选择算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年04期
页码:
46-51
栏目:
智能、算法、系统工程
出版日期:
2020-04-10

文章信息/Info

Title:
Exponential Loss Margin Based Multi-label Feature Selection
文章编号:
1673-629X(2020)04-0046-06
作者:
李雨婷
南京邮电大学 计算机学院、软件学院、网络空间安全学院,江苏 南京 210023
Author(s):
LI Yu-ting
School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
多标记学习特征选择分类间隔指数损失
Keywords:
multi-label learningfeature selectionmarginexponential loss
分类号:
TP181
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 04. 009
摘要:
在多标记学习的任务中,多标记学习的每个样本可被多个标签标记,比单标记学习的应用空间更广关注度更高,多标记学习可以利用关联性提高算法的性能。在多标记学习中,传统特征选择算法已不再适用,一方面,传统的特征选择算法可被用于单标记的评估标准。多标记学习使得多个标记被同时优化;而 且在多标记学习中关联信息存在于不同标记间。因此,可设计一种能够处理多标记问题的特征选择算法,使标记之间的关联信息能够被提取和利用。通过设计最优的目标损失函数,提出了基于指数损失间隔的多标记特征选择算法。该算法可以通过样本相似性的方法,将特征空间和标记空间的信息融合在一起,独立于特定的分类算法或转换策略。优于其他特征选择算法的分类性能。在现实世界的数据集上验证了所提算法的正确性以及较好的性能。
Abstract:
In multi-label learning tasks,each sample can be associated with multiple labels at the same time,it has a wider application space than the single- label learning problem. Multi-label learning problem employs correlation information to improve the performance of the algorithm. In the multi-labeling process, the traditional feature selection algorithm is no longer applicable. On the one hand,theyare generally designed to evaluate criteria for single markers. In the multi-label learning,it is necessary to optimize multiple tags at the same time; on the other hand, there is a certain amount of associa- ted information between different tags in multi-label learning. Therefore,it is necessary to design a feature selection algorithm capable of handling multi-labeling problems, which is capable ofextracting and utilizing association information between labels. An improved multi-label feature selection algorithm based on exponential loss margin is proposed,benefiting from the large margin based multi-label feature selection algorithm. The algorithm combines the information of feature space with mark space according to sample similarity. The correlation information is also independent of the specific classification algorithm or transformation strategy. The experiments on real world datasets demonstrate the correctness and high performan- ce of the proposed algorithm.

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2010,(04):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(04):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2007,(04):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2007,(04):117.

更新日期/Last Update: 2020-04-10