[1]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67-72.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].Computer Technology and Development,2020,30(03):67-72.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
点击复制

数据增广下的人脸识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年03期
页码:
67-72
栏目:
智能、算法、系统工程
出版日期:
2020-03-10

文章信息/Info

Title:
Research on Face Recognition Based on Data Augmentation
文章编号:
1673-629X(2020)03-0067-06
作者:
黄法秀12张世杰12吴志红1陈 虎12孙家炜2
1.四川大学视觉合成图形图像技术国防重点学科实验室,四川 成都 610065; 2.四川川大智胜软件股份有限公司,四川 成都 610045
Author(s):
HUANG Fa-xiu12ZHANG Shi-jie12WU Zhi-hong1CHEN Hu12SUN Jia-wei2
1.National Key Laboratory of Fundamental Science on Synthetic Vision,Sichuan University,Chengdu 610065,China; 2.Wisesoft Co.,Ltd.,Chengdu 610045,China
关键词:
人脸识别深度学习数据增广滤波亮度调整腐蚀操作
Keywords:
face recognitiondeep learningdata augmentfilterbrightness adjustmenteroding operation
分类号:
TP3
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 03. 013
摘要:
随着计算机技术的发展和应用,人脸识别技术以其具有的非强制性、非接触性、并发性等优势得到了越来越广泛 的应用。 大规模数据是提高基于深度学习人脸识别准确率的关键因素,但往往数据不易获得,并且存在训练数据缺乏测 试数据样本的情况,如模糊、亮度失真和腐蚀感画质样本等。 针对训练数据缺乏问题,提出了利用滤波、亮度调节和腐蚀 操作3种传统图像处理方法10种增广方式增加数据量和数据的多样性,进而提高识别算法的性能。 将原始数据和增广数 据作为训练数据训练模型,选择从不同地方拍摄的视频上截取的人脸图像组成了四个测试集,实验结果表明,增广数据与 测试集样本存在一致性时,增广方式对提升识别性能都有一定的效果,其中最好的效果是对图像整体调亮时在一个测试 集上的识别率提高了4.02%。
Abstract:
With the development and application of computer technology,face recognition technology has been more and more widely used because of its? ? non-mandatory,non-contact,concurrency and other advantages. Large-scaledatais the key factor to improve the accuracy of face recognition based on deep learning. However,it is often difficult to obtain the data,and there is a lack of test data samples for training data,such as blur,brightness distortion and corrosion quality samples.In order to solve the problem of lack of training data, three traditional image processing methods, filtering, brightness adjustment and eroding operation,are proposed to increase the amount of data and the diversity of datain 10 ways,so as to improve the performance of the recognition algorithm. The original data and augmented data are used as training data training models,and the face images intercepted from different places are selected to form four test sets. The experiment shows that when the augmented data are consistent with the? test set samples,the augmented method has a certain effect on improving the recognition performance,among which the best effect is that the recognition rateon atest set is increased by 4.02% when the image is brightened as a whole.

相似文献/References:

[1]徐钊,吴光敏,覃世欢.基于AccelDSP的LBP算法在人脸识别中的应用[J].计算机技术与发展,2014,24(01):51.
 XU Zhao,WU Guang-min,QIN Shi-huan.Application of LBP Algorithm Based on AccelDSP in Face Recognition[J].Computer Technology and Development,2014,24(03):51.
[2]时书剑 马燕.基于Gabor滤波和KPCA的人脸识别方法[J].计算机技术与发展,2010,(04):51.
 SHI Shu-jian,MA Yan.Face Recognition Based on Gabor Filters and Kernel Principal Component Analysis[J].Computer Technology and Development,2010,(03):51.
[3]袁健 姚明海.基于简化局部二元法的人脸特征提取[J].计算机技术与发展,2009,(06):84.
 YUAN Jian,YAO Ming-hai.Facial Feature Extraction Based on Simplified Local Binary Patterns[J].Computer Technology and Development,2009,(03):84.
[4]李伟.人脸识别算法在智能手机上的实现[J].计算机技术与发展,2008,(01):161.
 LI Wei.Implementation of Face Identification in Intelligent Mobile Telephone[J].Computer Technology and Development,2008,(03):161.
[5]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].Computer Technology and Development,2008,(03):227.
[6]孙晓玲 侯德文 储凡静.人脸识别中的眼睛定位方法[J].计算机技术与发展,2008,(10):46.
 SUN Xiao-ling,HOU De-wen,CHU Fan-jing.Eye Location in Face Recogniton[J].Computer Technology and Development,2008,(03):46.
[7]王静 谭同德.基于梯度和模板二次匹配的人眼定位[J].计算机技术与发展,2007,(10):144.
 WANG Jing,TAN Tong-de.A Method to Eyes Location Based on Step- Direction and Templet - Matching[J].Computer Technology and Development,2007,(03):144.
[8]高宏娟 潘晨.基于非负矩阵分解的人脸识别算法的改进[J].计算机技术与发展,2007,(11):63.
 GAO Hong-juan,PAN Chen.Improved Face Recognition Algorithm Based on Non- Negative Matrix Factorization[J].Computer Technology and Development,2007,(03):63.
[9]徐勇 张海 周森鑫 王辉.基于统计学习理论的人脸识别方法研究[J].计算机技术与发展,2007,(11):118.
 XU Yong,ZHANG Hai,ZHOU Sen-xin,et al.Research on Face Recognition Based on Statistical Learning Theory[J].Computer Technology and Development,2007,(03):118.
[10]马驰 阮秋琦.基于离散微粒群优化算法的SVM参数选择[J].计算机技术与发展,2007,(12):20.
 MA Chi,RUAN Qiu-qi.Parameter Selection for SVM Based on Discrete PSO[J].Computer Technology and Development,2007,(03):20.
[11]贺辉,陈思佳,黄静.一种改善光照对深度人脸识别影响的方法[J].计算机技术与发展,2019,29(04):38.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 008]
 HE Hui,CHEN Si-jia,HUANG Jing.An Improved Illumination Approach in Deep Face Recognition[J].Computer Technology and Development,2019,29(03):38.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 008]
[12]解奕鹏,秦品乐,曾建潮,等.基于姿态注意力的特定角度人脸正面化网络[J].计算机技术与发展,2023,33(07):47.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 007]
 XIE Yi-peng,QIN Pin-le,ZENG Jian-chao,et al.Face Frontalization Network of Specific Angle Based on Pose Attention[J].Computer Technology and Development,2023,33(03):47.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 007]

更新日期/Last Update: 2020-03-10