[1]陈 希,李玲娟.基于降维和聚类的协同过滤推荐算法[J].计算机技术与发展,2020,30(02):138-142.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 027]
 CHEN Xi,LI Ling-juan.Collaborative Filtering Recommendation Algorithm Based on Dimension Reduction and Clustering[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):138-142.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 027]
点击复制

基于降维和聚类的协同过滤推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年02期
页码:
138-142
栏目:
应用开发研究
出版日期:
2020-02-10

文章信息/Info

Title:
Collaborative Filtering Recommendation Algorithm Based on Dimension Reduction and Clustering
文章编号:
1673-629X(2020)02-0138-05
作者:
陈 希李玲娟
南京邮电大学 计算机学院,江苏 南京 210003
Author(s):
CHEN XiLI Ling-juan
School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
主成分分析二分 K-means聚类协同过滤个性化推荐
Keywords:
principal component analysisbinary K-means clusteringcollaborative filteringpersonalized recommendation
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 02. 027
摘要:
协同过滤算法在个性化推荐系统中应用广泛,为保证其在用户规模扩大的同时可以保持推荐的高效性和准确性, 设计了一种基于 PCA 降维和二分 K-means 聚类的协同过滤推荐算法 PK-CF。 该算法为解决用户-项目评分矩阵极度稀 疏造成的相似度计算误差的问题,采用主成分分析法对用户-项目评分矩阵进行降维,去除含信息量少的维度,只保留最 能代表用户特征的维度;为解决协同过滤算法在系统规模庞大情况下的相似度计算时耗问题,通过在降维后的低维向量 空间上进行二分 K-means聚类来减小目标用户最近邻的搜索范围。 在 MovieLens 数据集上对传统协同过滤算法、基于 K-means聚类的协同过滤算法及 PK-CF算法进行性能测试的结果表明:PK-CF 算法不仅能有效地提高推荐结果的准确 率与召回率,而且具有较高的时间效率。
Abstract:
Collaborative filtering algorithms are widely used in personalized recommendation system. In order to ensure the high efficiency and accuracy of recommendation while expanding the scale of users,a collaborative filtering recommendation algorithm PK-CF based on PCA dimensionality reduction and binary K-means clustering is designed. The principal component analysis is used to reduce the dimension of the user-item scoring matrix,remove dimensions with little information,and only retain the dimension that best represents the user’s characteristics,so as to solve the problem of the larger similarity calculation error caused by the extremely sparse user-item scoring matrix. In order to solve the problem of time-consuming of similarity calculation under the condition of large scale of the system,the algorithm reduces the search range of the nearest neighbor of the target user by performing binary K-means clustering on the low-dimensional vector space. The results of testing performance of traditional collaborative filtering algorithm,the collaborative filtering algorithm based on K-meansclustering and the PK-CF algorithm on MovieLens data set show that the PK-CF algorithm can effectively improve the accuracy and recall rate of the recommendation results with higher time efficiency.

相似文献/References:

[1]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(02):62.
[2]宋世刚 粘永健 李纲.面向目标检测的高光谱图像压缩技术[J].计算机技术与发展,2009,(11):1.
 SONG Shi-gang,NIAN Yong-jian,LI Gang.Hyperspectral Image Compression Employing Target Detection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(02):1.
[3]张瑞霞 王勇.融合PCA和LDA的入侵检测算法[J].计算机技术与发展,2009,(11):132.
 ZHANG Rui-xia,WANG Yong.Fusion of PCA and LDA for Intrusion Detection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2009,(02):132.
[4]俞小娟 胡金柱 李琼 周毕吉.用主成分分析法研究短语字段的判别因素[J].计算机技术与发展,2008,(10):116.
 YU Xiao-juan,HU Jin-zhu,LI Qiong,et al.Studying Factors of Judging Phrase Fields by Method of Principal Component Analysis[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(02):116.
[5]刘树利 胡茂林.基于不同视角的人脸模型识别方法[J].计算机技术与发展,2006,(06):213.
 LIU Shu-li,HU Mao-lin.Recognition of Human Face in Different Pose[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2006,(02):213.
[6]王辉.主成分分析及支持向量机在人脸识别中的应用[J].计算机技术与发展,2006,(08):24.
 WANG Hui.Application in Human Face Recognition Based on Principal Component Analysis and Support Vector Machine[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2006,(02):24.
[7]张靖 葛玮 郝克刚.软件度量中主成分分析方法的研究[J].计算机技术与发展,2006,(12):144.
 ZHANG Jing,GE Wei,HAO Ke-gang.Research of Principal Component Analysis in Software Metrics[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2006,(02):144.
[8]职为梅 范明.样本大小对稀有类分类的影响[J].计算机技术与发展,2011,(05):9.
 ZHI Wei-mei,FAN Ming.Impact of Sample Size for Rare-Class Classification[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(02):9.
[9]邓炳荣 伍世元 武琳 邵雅雯 李江勇.一种基于计算机嗅觉的卷烟等级识别方法[J].计算机技术与发展,2011,(11):177.
 DENG Bing-rong,WU Shi-yuan,WU Lin,et al.Application of Electronic Nose in Discrimination of Different Levels Cigarette[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(02):177.
[10]杨晓斌 周宁宁 杨婷婷.基于统计处理图像放大方法在人脸识别中应用[J].计算机技术与发展,2011,(12):55.
 YANG Xiao-bin,ZHOU Ning-ning,YANG Ting-ting.Application of an Image Magnification Method Based on Statistical Processing in Face Recognition[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2011,(02):55.

更新日期/Last Update: 2020-02-10