[1]易 未,郑沫利,赵艳轲,等.基于小样本 SVR 的迁移学习及其应用[J].计算机技术与发展,2020,30(02):47-51.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
 YI Wei,ZHENG Mo-li,ZHAO Yan-ke,et al.Transfer Learning Based on Support Vector Regression Model for Small Sample Data and Its Applications[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):47-51.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
点击复制

基于小样本 SVR 的迁移学习及其应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年02期
页码:
47-51
栏目:
智能、算法、系统工程
出版日期:
2020-02-10

文章信息/Info

Title:
Transfer Learning Based on Support Vector Regression Model for Small Sample Data and Its Applications
文章编号:
1673-629X(2020)02-0047-05
作者:
易 未1郑沫利2赵艳轲2毛 力1孙 俊1
1.江南大学 物联网工程学院,江苏 无锡 214122; 2.国贸工程设计院,北京 100037
Author(s):
YI Wei1ZHENG Mo-li2ZHAO Yan-ke2MAO Li1SUN Jun1
1.School of Internet of Things,Jiangnan University,Wuxi 214122,China; 2.Guomao Engineering Design Institute,Beijing100037,China
关键词:
支持向量回归机迁移学习加权ε支持向量回归机Bagging小样本数据
Keywords:
support vector regressiontransfer learningweighted εsupport vector regressionBaggingsmall sample
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 02. 010
摘要:
当前机器学习的技术已经运用到很多工程项目中,但大部分机器学习的算法只有在样本数量充足且运用在单一 场景中的时候,才能获得良好的结果。 其中,经典的支持向量回归机是一种具有良好泛化能力的回归算法。 但若当前场 景的样本数量较少时,则得到的回归模型泛化能力较差。 针对此问题,以加权 着 支持向量回归机为基础,提出了一种小样 本数据的迁移学习支持向量回归机算法。 该算法以加权ε支持向量回归机为Bagging算法的基学习器,使用与目标任务 相关联的源域数据,通过自助采样生成多个子回归模型,采用简单平均法合成一个总回归模型。 在UCI数据集和现实数 据集——玉米棒与花生粒储藏环节损失数据集上的实验结果表明,该算法较标准 ε-SVR算法与改进的RMTL算法在小 数据样本上有更好的泛化能力。
Abstract:
Machine learning technologies have been applied to many industry programs nowadays,but most of them can obtain satisfied results with sufficient samples in a single situation. For instance,the classical support vector regression is a regression algorithm with better generalization ability. However, if the sample size in the current scene is small,the generalization ability of the regression model is poor. To solve this problem,we propose a transfer learning support vector regression algorithm for small sample data based on weighted ε support vector regression. In this paper,ε weighted support vector regression is taken as the basic learner of Bagging algorithm,and multiple sub regression models are generated by bootstrap using source data associated with target data,and a general regression model is synthesized by simple average method. Experimental results on the UCI datasets and the real dataset,the corn and peanut sales loss dataset,show that the proposed algorithm has better generalization ability than SVR algorithm and the improved RMTL algorithm on small data samples.

相似文献/References:

[1]崔鹏飞 严洪森.基于V-SVR的海洋环境下武器效能评估[J].计算机技术与发展,2012,(08):20.
 CUI Peng-fei,YAN Hong-sen.Operational Effectiveness Evaluation of Weapon under Influence of Marine Environment Based on v-SVR[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(02):20.
[2]李 勇,刘战东,张海军.跨项目软件缺陷预测方法研究综述[J].计算机技术与发展,2020,30(03):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
 LI Yong,LIU Zhan-dong,ZHANG Hai-jun.Review on Cross-project Software Defects Prediction Methods[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
[3]武苏雯,赵慧杰,刘 鑫,等.基于迁移学习的图像分类在诗词中的应用研究[J].计算机技术与发展,2021,31(07):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
 WU Su-wen,ZHAO Hui-jie,LIU Xin,et al.Research on Application of Image Classification Based onTransfer Learning in Poetry[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(02):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
[4]娄丰鹏,吴迪,荆晓远,等.增加度量元的迁移学习跨项目软件缺陷预测[J].计算机技术与发展,2018,28(07):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
 LOU Feng-peng,WU Di,JING Xiao-yuan,et al.Cross-project Software Defect Prediction Based on Transfer Learning with Metrics[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
[5]刘宇廷,倪颖杰.融合知识迁移学习的微博社团检测模型构建[J].计算机技术与发展,2018,28(09):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
 LIU Yu-ting,NI Ying-jie.Construction of Weibo Community Detection Model with Knowledge Transfer Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
[6]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2019,29(02):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
[7]王新美,丁爱玲,雷梦宁,等.基于 CNN 和 SVM 融合的交通标志识别[J].计算机技术与发展,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
 WANG Xin-mei,DING Ai-ling,LEI Meng-ning,et al.Traffic Sign Recognition Based on Combination of CNN and SVM[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
[8]龚 安,井晓萌.多卷积神经网络模型融合的农作物病害图像识别[J].计算机技术与发展,2020,30(08):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
 GONG An,JING Xiao-meng.Image Recognition of Crop Diseases Based on Multi-convolution Neural Network Model Ensemble[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
[9]龚 安,郭文婷.基于卷积神经网络的皮肤癌识别方法[J].计算机技术与发展,2020,30(10):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
 GONG An,GUO Wen-ting.Skin Cancer Image Classification Method Based on Convolutional Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
[10]张泽宇,郭 斌,张太红*.基于 DCNN 的马匹图像分割算法研究[J].计算机技术与发展,2020,30(10):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
 ZHANG Ze-yu,GUO Bin,ZHANG Tai-hong.Research on Horse Image Segmentation Algorithm Based on DCNN[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]

更新日期/Last Update: 2020-02-10