[1]吴家皋,王永荣,邹志强,等.局部敏感哈希图像检索参数优化方法[J].计算机技术与发展,2020,30(01):32-37.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 006]
 WU Jia-gao,WANG Yong-rong,ZOU Zhi-qiang,et al.Parameter Optimization Method for Locality Sensitive Hash Image Retrieval[J].Computer Technology and Development,2020,30(01):32-37.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 006]
点击复制

局部敏感哈希图像检索参数优化方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年01期
页码:
32-37
栏目:
智能、算法、系统工程
出版日期:
2020-01-10

文章信息/Info

Title:
Parameter Optimization Method for Locality Sensitive Hash Image Retrieval
文章编号:
1673-629X(2020)01-0032-06
作者:
吴家皋12 王永荣12 邹志强12 胡 斌3
1. 南京邮电大学 计算机学院,江苏 南京 210023; 2. 江苏省大数据安全与智能处理重点实验室,江苏 南京 210023; 3. 南京师范大学 虚拟地理环境教育部重点实验室,江苏 南京 210046
Author(s):
WU Jia-gao 12 WANG Yong-rong 12 ZOU Zhi-qiang 12 HU Bin 3
1. School of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210023,China; 2. Jiangsu Key Laboratory of Big Data Security &Intelligent Processing,Nanjing 210023,China; 3. Key Laboratory of Virtual Geographic Environment (Nanjing Normal University),Ministry of Education,Nanjing 210046,China
关键词:
图像检索局部敏感哈希参数优化优化模型算法
Keywords:
image retrievallocality sensitive hashingparameter optimizationoptimization modelalgorithm
分类号:
TP391.4
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 01. 006
摘要:
随着大数据时代的到来,如何及时准确地处理海量的图像、视频等多媒体数据已成为相关领域新的挑战。 局部敏感哈希算法在处理高维图像特征数据时表现出了良好的性能,使其成为了近年来的研究热点。 针对图像检索算法参数的优化选择问题,提出了一种局部敏感哈希图像检索参数优化方法。 首先建立面向图像检索的局部敏感哈希算法的性能优化模型,给出其参数优化所对应的非线性最优化问题的一般形式,并且定义了新的优化目标函数;然后分析图像数据间的距离分布规律,发现了求解上述参数优化问题的快速方法;最后结合数值微分和二分查找提出相应的局部敏感哈希参数优化算法。 实验结果表明,该方法可以大幅降低算法的复杂度,提高运行效率,同时保持较高的精确值和召回率的调和均值 F1 。
Abstract:
With the advent of the era of big data,how to process massive images,videos and other multimedia data in a timely and accurate manner has become a new challenge in related fields. Due to its great performance in processing high-dimensional image feature data,locality sensitive hash (LSH) algorithm has become a research hotspot in recent years. In order to optimize the parameters of image retrieval algorithm,we propose a parameter optimization method for LSH image retrieval. Firstly,a performance optimization model of LSH for image retrieval is established,the general form of the non-linear optimization problem for LSH parameter optimization is given, and the novel optimized objective function is defined. Moreover,the distance distribution between image data is analyzed,and a quick method for solving the parameter optimization problem aforementioned is found. Finally,a parameter optimization algorithm for LSH is proposed based on numerical differentiation and binary search. The experiment shows that the proposed method can greatly reduce the complexity and improve the efficiency of the algorithm,while maintaining a high harmonic mean F1 of precision and recall.

相似文献/References:

[1]钱秋银 张正兰.一种基于多分类SVM的相关反馈图像检索方法[J].计算机技术与发展,2009,(08):65.
 QIAN Qiu-yin,ZHANG Zheng-lan.One Method of Relevance Feedback Image Retrieval Based on Multi - Classification SVM[J].Computer Technology and Development,2009,(01):65.
[2]闫乐林 亓莱滨 蔡平胜.一种基于内容的图像检索系统的设计与实现[J].计算机技术与发展,2009,(12):205.
 YAN Le-lin,QI Lai-bin,CAI Ping-sheng.A Kind of System Design and Implementation Approach on Content- Based Image Retrieval[J].Computer Technology and Development,2009,(01):205.
[3]韩轩 陈海山.综合颜色和局部空间特征的彩色图像检索方法[J].计算机技术与发展,2008,(01):122.
 HAN Xuan,CHEN Hai-shan.Content- Based Image Retrieval Using Color and Spatial Feature Histograms[J].Computer Technology and Development,2008,(01):122.
[4]彭太乐 蒋建国 魏仕民 沈克.一种融合语义的图像检索技术研究[J].计算机技术与发展,2008,(03):102.
 PENG Tai-le,JIANG Jian-guo,WEI Shi-min,et al.Research on Image Retrieval Technique Using Semantic Information[J].Computer Technology and Development,2008,(01):102.
[5]王朝晖 孙惠萍.图像检索中IRRL模型研究[J].计算机技术与发展,2008,(12):35.
 WANG Zhao-hui,SUN Hui-ping.Research of IRRL Model in Image Retrieval[J].Computer Technology and Development,2008,(01):35.
[6]冯亚 耿国华 周明全 刘瑞华.基于颜色特征图像检索与相关反馈综合研究[J].计算机技术与发展,2007,(12):251.
 FENG Ya,GENG Guo-hua,ZHOU Ming-quan,et al.Integrated Research of Color- Based Image Retrieval and Relevance Feedback[J].Computer Technology and Development,2007,(01):251.
[7]汪彦龙 刘金华 王丽萍.基于对象空间关系的图像检索方法研究[J].计算机技术与发展,2006,(01):66.
 WANG Yan-long,LIU Jin-hua,WANG Li-ping.Research of Image Retrieval Method Based on Object Spatial Relationships[J].Computer Technology and Development,2006,(01):66.
[8]汪慧兰 赵海峰 罗斌.基于局部颜色空间特征的图像检索[J].计算机技术与发展,2006,(01):76.
 WANG Hui-lan,ZHAO Hai-feng,LUO Bin.Image Retrieval Based on Local Color and Spatial Features[J].Computer Technology and Development,2006,(01):76.
[9]凌俊斌 庄卫华 刘鲁西.图像检索中的主动学习及其可测量性[J].计算机技术与发展,2006,(02):132.
 LING Jun-bin,ZHUANG Wei-hua,LIU Lu-xi.Active Learning and Its Scalability for Image Retrieval[J].Computer Technology and Development,2006,(01):132.
[10]吴波 王保保.几种基于内容的图像检索的方法[J].计算机技术与发展,2006,(06):191.
 WU Bo,WANG Bao-bao.Some Methods about Content- Based Image Retrieval[J].Computer Technology and Development,2006,(01):191.

更新日期/Last Update: 2020-01-10