[1]徐一轩,伍卫国,王思敏,等.基于长短期记忆网络(LSTM)的数据中心温度预测算法[J].计算机技术与发展,2019,29(12):1-7.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 001]
 XU Yi-xuan,WU Wei-guo,WANG Si-min,et al.Data Center Temperature Prediction Algorithm Based on Long Short-term Memory Network[J].,2019,29(12):1-7.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 001]
点击复制

基于长短期记忆网络(LSTM)的数据中心温度预测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年12期
页码:
1-7
栏目:
智能、算法、系统工程
出版日期:
2019-12-10

文章信息/Info

Title:
Data Center Temperature Prediction Algorithm Based on Long Short-term Memory Network
文章编号:
1673-629X(2019)12-0001-07
作者:
徐一轩伍卫国王思敏胡 壮崔 舜
西安交通大学 电子与信息工程学院,陕西 西安 710049
Author(s):
XU Yi-xuanWU Wei-guoWANG Si-minHU ZhuangCUI Shun
School of Electronics and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China
关键词:
数据中心温度预测长短期记忆网络服务器入口温度
Keywords:
data centertemperature predictionlong short-term memoryserver inlet temperature
分类号:
TP308
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 12. 001
摘要:
大数据和云计算时代推动数据中心规模迅速扩大,有调查研究显示,国内数据中心年耗电量超过全社会用电量的1.5%,且在数据中心运行时高达 10%的机柜运行温度高于设备可靠性的允许范围。 温度监测和预测对于防止服务器过热而停机和提高数据中心的能源效率至关重要。 文中提出了一种基于长短期记忆网络(LSTM)的温度预测算法,该算法使用数据中心温度监控数据和服务器实际运行参数生成时间序列训练集来训练神经网络模型并预测服务器入口温度。为了降低预测模型的训练时间,基于热局部性原理提出了一种联合建模框架,显著降低了在线温度预测建模的复杂性。在一个有 15 台服务器的测试台上进行了实验验证,结果表明该方法可以准确地预测动态工作负载的服务器的入口温度演变。
Abstract:
Nowadays,data center has been expanded dramatically by the development of big data and cloud computing. A survey has showed that annual power consumption of data centers in China exceeds 1.5% of the whole society consumption,furthermore,up to 10% of the rack operating temperature is higher than the allowable range of equipment reliability. Temperature monitoring and prediction are crucial for preventing server failures caused by overheating and improving energy efficiency in the data center. We propose a temperature prediction algorithm base on long short-term memory (LSTM) network. In this algorithm,we train the neural network model with temperature monitoring data and time series set composed of parameters of actual runtime and finally obtain the predicted temperature of the server entrance. In order to reduce the training time of the prediction model,we propose a joint modeling framework based on the thermal locality principle,which significantly reduces the complexity of online temperature prediction modeling. The experimental verification on a test bed with 15 servers shows that the proposed method can accurately predict the inlet temperature evolution of servers with dynamic workloads.

相似文献/References:

[1]戴文娟 王晓峰.基于XML和BizTalk数据集成平台的设计与构建[J].计算机技术与发展,2008,(10):162.
 DAI Wen-juan,WANG Xiao-feng.Design and Construction of Data Integration Platform Based on XML and BizTalk Technology[J].,2008,(12):162.
[2]黎冬媛 朱春媚 莫剑斌.基于ORM的农业信息管理系统的设计与实现[J].计算机技术与发展,2011,(08):204.
 LI Dong-yuan,ZHU Chun-mei,MO Jian-bin.Design and Implementation of Agricultural Information Management System Based on ORM[J].,2011,(12):204.
[3]喻波,胡怀湘.MR-IOV:下一代数据中心I/O虚拟化技术[J].计算机技术与发展,2013,(10):91.
 YU Bo,HU Huai-xiang.MR-IOV:I/O Virtualization Technology for Next Generation Data Center[J].,2013,(12):91.
[4]葛苏慧,梁宏涛,房正华.高校共享数据中心虚拟化技术的架构[J].计算机技术与发展,2014,24(04):174.
 GE Su-hui[],LIANG Hong-tao[],FANG Zheng-hua[].Virtualization Technology Architecture of Sharing Data Center in University[J].,2014,24(12):174.
[5]邢静宇[],张立臣[]. 基于能量控制与资源调度的信息物理系统建模[J].计算机技术与发展,2014,24(07):120.
 XING Jing-yu[],ZHANG Li-chen[]. Cyber Physical System Modeling Based on Energy Control and Resource Scheduling[J].,2014,24(12):120.
[6]罗雅过[],赵宁社[]. 高校数字化校园数据中心平台的研究与设计[J].计算机技术与发展,2014,24(09):217.
 LUO Ya-guo[],ZHAO Ning-she[]. Research and Design of University Digital Campus Data Center Platform[J].,2014,24(12):217.
[7]张轶. RDB平台和大数据平台混搭式的数据中心设计[J].计算机技术与发展,2015,25(05):172.
 ZHANG Yi. Design of Data Center of RDB Platform and Big Data Platform Mashup[J].,2015,25(12):172.
[8]戚艳军[],淡战平[]. 一种基于SOA架构的电子政务数据交换及融合机制——以教育电子政务为例[J].计算机技术与发展,2015,25(11):110.
 QI Yan-jun[],DAN Zhan-ping[]. Data Exchange and Integration Mechanism of E-government Based on SOA-Study about Education E-government[J].,2015,25(12):110.
[9]胡荣辉,王瑞通. 云环境下虚拟机集群迁移策略研究[J].计算机技术与发展,2017,27(11):33.
 HU Rong-hui,WANG Rui-tong. Study on Virtual Cluster Migration Strategy in Cloud Environment[J].,2017,27(12):33.
[10]张江南,王 海.基于数据中心的农业物联网系统的设计[J].计算机技术与发展,2019,29(09):179.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 034]
 ZHANG Jiang-nan,WANG Hai.Design of Agricultural IoT System Based on Data Center[J].,2019,29(12):179.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 034]

更新日期/Last Update: 2019-12-10