[1]孙娇娇,龚 安,史海涛.基于卷积神经网络的低剂量 CT 图像肺结节检测[J].计算机技术与发展,2019,29(11):173-177.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 035]
 SUN Jiao-jiao,GONG An,SHI Hai-tao.Detection of Low-dose CT Pulmonary Nodule Based on Convolutional Neural Network[J].,2019,29(11):173-177.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 035]
点击复制

基于卷积神经网络的低剂量 CT 图像肺结节检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年11期
页码:
173-177
栏目:
应用开发研究
出版日期:
2019-11-10

文章信息/Info

Title:
Detection of Low-dose CT Pulmonary Nodule Based on Convolutional Neural Network
文章编号:
1673-629X(2019)11-0173-05
作者:
孙娇娇龚 安史海涛
中国石油大学(华东) 计算机与通信工程学院,山东 青岛 266580
Author(s):
SUN Jiao-jiaoGONG AnSHI Hai-tao
School of Computer &Communication Engineering,China University of Petroleum,Qingdao 266580,China
关键词:
图像识别肺结节检测卷积神经网络CU-netCFaster-Rcnn深度学习
Keywords:
image identificationpulmonary nodule detectionconvolution neural networkCU-netCFaster-Rcnndeep learning
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 11. 035
摘要:
由于现有的肺结节检测方法大多局限于形态特征等主观因素所带来的影响,准确率有待提升且假阳性高,而目前的深度学习检测方法较基础,虽然有效降低了假阳率,但准确率也会随之下降。 文中提出了一种结合改进全卷积神经网络(CU-net)和循环 3D Faster-Rcnn(3D CFaster-Rcnn)的肺结节检测方法来解决这一问题。 该方法使用 CU-net 对 CT 图像进行候选区域检测,快速定位出图像的疑似结节区域,输出的图像尺寸不变,通过疑似区域坐标计算,提取候选区域三维立体像素块在 3D CFaster-Rcnn 模型中进行训练,进行假阳性去除。 候选区域检测步骤结节召回率为 98.5%,在进行假阳性处理即模型优化后,在假阳率为 1.65 时得到了 92.6%的准确率。 与其他方法的对比结果表明,该模型在假阳性较低时取得了较高的准确率。
Abstract:
Since the existing lung nodule detection methods are mostly limited to subjective factors such as morphological characteristics,the accuracy needs to be improved with high false positive. The existing deep learning detection method is primary. Although the false positive rate can be effectively reduced,the accuracy rate will also decrease. To solve the defect,we propose a lung nodule detection method which combines the improved whole convolutional neural network (CU-net) and the cyclic 3D Faster-Rcnn (3D CFaster-Rcnn). The CU-net is used to perform candidate region detection on CT images,and then suspected nodule regions of the images are quickly located without changing size of the images. The candidate area three-dimensional pixel block is extracted and trained in the 3D CFaster-Rcnn model by pseudo-region coordinate calculation,as well,the false positive removal is operated. It is obtained that the nodule recall rate of the candidate region detection step is 98.5%. After the model optimization to false positive treatment, the accuracy rate achieves 92.6% with false positive rate being 1. 65. Compared with other methods,the model is more accurate when the false positives are lower.

相似文献/References:

[1]王明平 宋丽梅.基于计算机视觉的车架号采集系统[J].计算机技术与发展,2008,(04):239.
 WANG Ming-ping,SONG Li-mei.Vehicle Identify Number Acquisition System Based on Machine-Vision[J].,2008,(11):239.
[2]徐仕玲 赵敏 徐建波.野外早期火灾图像识别方法研究[J].计算机技术与发展,2008,(06):214.
 XU Shi-ling,ZHAO Min,XU Jian-bo.Research for Early Fire Image Recognition Technology in Outdoors[J].,2008,(11):214.
[3]张婷 吴元君 黄俊 吴建国.选票选举系统中选票图像的预处理方法研究[J].计算机技术与发展,2007,(04):225.
 ZHANG Ting,WU Yuan-jun,HUANG Jun,et al.Research of Image Pre- Processing in Vote Processing System[J].,2007,(11):225.
[4]吴忠 朱国龙 黄葛峰 吴建国.基于图像识别技术的手写数字识别方法[J].计算机技术与发展,2011,(12):48.
 WU Zhong,ZHU Guo-long,HUANG Ge-feng,et al.Handwritten Digit Recognition Based on Image Recognition System[J].,2011,(11):48.
[5]汪晨 张涛 林为民 邓松 时坚 李伟伟.图像识别综述及在电力信息安全中的应用研究[J].计算机技术与发展,2012,(04):161.
 WANG Chen,ZHANG Tao,LIN Wei-min,et al.Image Recognition Review and Application Research in Electric Power Information Security[J].,2012,(11):161.
[6]王珂雅 邱力军.一种新的脑部CT图像异常检测算法[J].计算机技术与发展,2012,(05):185.
 WANG Ke-ya,QIU Li-jun.A New Anomaly Detection Algorithm for Brain CT Image[J].,2012,(11):185.
[7]周诚诚 张代远[].利用图像识别技术过滤海量可疑钓鱼网站[J].计算机技术与发展,2012,(11):246.
 ZHOU Cheng-cheng,ZHANG Dai-yuan.Using Image Recognition Technology to Filter Mass Suspicious Phishing Sites[J].,2012,(11):246.
[8]毕 杨,宋 飞,王 轩.一种航空维修工具智能管理系统的设计与实现[J].计算机技术与发展,2020,30(07):199.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 041]
 BI Yang,SONG Fei,WANG Xuan.Design and Implementation of an Intelligent Management System of Aviation Maintenance Tools[J].,2020,30(11):199.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 041]
[9]严一鸣[],郭星[]. 基于计算机视觉的交互式电子沙盘系统研究[J].计算机技术与发展,2017,27(06):195.
 YAN Yi-ming[],GUO Xing[]. Investigation on Interactive Electronic Sand Table System with Computer Vision[J].,2017,27(11):195.
[10]高友文,周本君,胡晓飞.基于数据增强的卷积神经网络图像识别研究[J].计算机技术与发展,2018,28(08):62.[doi:10.3969/ j. issn.1673-629X.2018.08.013]
 GAO You-wen,ZHOU Ben-jun,HU Xiao-fei.Research on Image Recognition of Convolution Neural Network Based on Data Enhancement[J].,2018,28(11):62.[doi:10.3969/ j. issn.1673-629X.2018.08.013]

更新日期/Last Update: 2019-11-10