[1]陆兴华,蔡 韬.基于 CNN 的安防监控步态特征提取研究[J].计算机技术与发展,2019,29(11):123-127.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 025]
 LU Xing-hua,CAI Tao.Research on Gait Feature Extraction in Security Monitoring System Based on CNN[J].,2019,29(11):123-127.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 025]
点击复制

基于 CNN 的安防监控步态特征提取研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年11期
页码:
123-127
栏目:
应用开发研究
出版日期:
2019-11-10

文章信息/Info

Title:
Research on Gait Feature Extraction in Security Monitoring System Based on CNN
文章编号:
1673-629X(2019)11-0123-05
作者:
陆兴华蔡 韬
广东工业大学华立学院,广东 广州 511325
Author(s):
LU Xing-huaCAI Tao
Huali College Guangdong University of Technology,Guangzhou 511325,China
关键词:
步态特征提取安防监控图像识别
Keywords:
gaitfeature extractionsecurity monitoringimagerecognition
分类号:
TP391;TN919.8
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 11. 025
摘要:
通过人体行走步态特征智能检测识别应用在安防监控系统,提出一种基于卷积神经网络(CNN)的人体行走步态特征识别方法。 采用视频和红外成像技术进行步态图像采集,采用三维区域轮廓扫描方法进行安防监控人体步态图像的三维轮廓检测,采用相关滤波跟踪算法进行步态红外图像的形状特征提取和信息增强处理,突出安防监控人体步态的类别属性特征点,在步态监控区域内对人体行走轨迹进行直方图均衡化处理,实现安防监控人体步态的个性化特征点提取。对提取的个性化特征点采用卷积神经网络进行分类训练,实现人体行走步态特征智能识别。 选取大量安防监控图像进行实验,仿真结果表明,采用该方法进行人体行走步态特征识别的成功率较高,输出人体行走步态个性化匹配特征点总数较多,步态的跟踪识别的偏移像素较小,能有效实现个体化的步态识别,实现安防监控。
Abstract:
Based on the application of intelligent detection and recognition of human walking gait features in security monitoring system,a method of human walking gait feature recognition based on convolutional neural network (CNN) is proposed. The gait image is collected by video and infrared imaging technology,and the 3D contour detection of human gait image is carried out by using 3D area contour scanning method. The correlation filter tracking algorithm is used to deal with the shape features and information enhancement of the infrared gait image,which highlights the category attribute feature points of the human gait monitored by security and equalizes the human walking track in the gait monitoring area. The personalized feature point extraction of human gait is realized. The extracted personalized feature points are classified and trained by convolution neural network to realize intelligent recognition of human walking gait features. A large number of infrared security surveillance images are selected for experiments. The simulation shows that the method has a high success rate in recognition of human walking gait features,and the total number of personalized matching feature points for human walking gait is more. It can effectively realize individual gait recognition and security monitoring.

相似文献/References:

[1]田昕辉 李成基.带有短语切分的中文文本分类方法[J].计算机技术与发展,2010,(01):5.
 TIAN Xin-hui,LEE Sung-kee.Phrase Segmentation for Chinese Text Classification[J].,2010,(11):5.
[2]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(11):128.
[3]罗林波 陈绮.氨基酸序列特征提取方法研究[J].计算机技术与发展,2010,(02):206.
 LUO Lin-bo,CHEN Qi.Research of Feature Extraction Methods of Amino Acid Sequence[J].,2010,(11):206.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(11):17.
[5]毛雁明 兰美辉 王运琼 冯乔生.一种改进的基于Harris的角点检测方法[J].计算机技术与发展,2009,(05):130.
 MAO Yan-ming,LAN Mei-hui,WANG Yun-qiong,et al.An Improved Corner Detection Method Based on Harris[J].,2009,(11):130.
[6]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(11):159.
[7]汤婷 吴小培 项明.指纹图像增强与特征提取[J].计算机技术与发展,2009,(01):81.
 TANG Ting,WU Xiao-pei,XIANG Ming.Fingerprint Image Enhancement and Minutiae Extraction[J].,2009,(11):81.
[8]张国富 凌捷 彭辉 谷保平.基于支持向量机的手写签名研究[J].计算机技术与发展,2008,(05):57.
 ZHANG Guo-fu,LING Jie,PENG Hui,et al.Research of Handwritten Signature Based on SVM[J].,2008,(11):57.
[9]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(11):227.
[10]黄国宏 刘刚.一种新的基于DCT变换的线性判别分析[J].计算机技术与发展,2008,(06):97.
 HUANG Guo-hong,LIU Gang.A Novel Linear Discriminant Analysis Based on DCT[J].,2008,(11):97.

更新日期/Last Update: 2019-11-10