[1]张超杰,吴果林.基于约束推荐的网络可视化分析[J].计算机技术与发展,2019,29(10):115-119.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 024]
 ZHANG Chao-jie,WU Guo-lin.Network Visualization Analysis Based on Constraint Recommendation[J].,2019,29(10):115-119.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 024]
点击复制

基于约束推荐的网络可视化分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年10期
页码:
115-119
栏目:
应用开发研究
出版日期:
2019-10-10

文章信息/Info

Title:
Network Visualization Analysis Based on Constraint Recommendation
文章编号:
1673-629X(2019)10-0115-05
作者:
张超杰1 吴果林12
1. 桂林航天工业学院 理学院,广西 桂林 541004; 2. 桂林航天工业学院 广西航空物流研究中心,广西 桂林 541004
Author(s):
ZHANG Chao-jie 1 WU Guo-lin 12
1. School of Science,Guilin University of Aerospace Technology,Guilin 541004,China; 2. Guangxi Aviation Logistics Research Center,Guilin University of Aerospace Technology,Guilin 541004,China
关键词:
基于约束的推荐复杂网络二部图可视化
Keywords:
constraint-based recommendationcomplex networkbipartite networkvisualization
分类号:
TP31
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 10. 024
摘要:
现如今互联网购物成为一种主要的购物方式,而各个购物平台都面临商品数据过量的问题,如何尽快地给出用户需求的商品列表就成为亟待解决的问题。 基于约束的推荐系统不依赖用户评分等用户偏好的历史数据,有效解决了“冷启动”的问题。 用户需求与用户意向物品的二部图网络包含了许多对推荐有价值隐藏在内部的信息,针对某在线销售记录的案例数据集进行研究,文中构建了二部图网络并对其进行了可视化,采用无标度网络模型(BA 模型)分析用户、物品节点的度。 由物品节点的度分布结构得出物品节点具有明显的社团属性,因此可以根据社团内部物品节点的度进行排序进行相应的推荐。 把这种推荐方法加入到推荐算法中,以增加推荐的精确度,为购物平台的推荐算法设计提供帮助。
Abstract:
At present,shopping on the Internet has become a major way of shopping,and each shopping platform is faced with the problem of excessive product data. How to give a list of products required by users as soon as possible has become an urgent problem to be solved. The constraint-based recommendation system does not rely on historical data such as user ratings and other user preferences, effectively solving the problem of “cold start”. The bipartite network of user needs and user-intentional items contains a lot of information that is valuable to the recommendation. We study the case data set of an online sales record,construct and visualize the bipartite graph network,and adopt a scale-free network model (BA model) to analyze the degree of user and item nodes. Since the degree distribution structure of the item node results in the item node having obvious community attribute, the corresponding recommendation can be performed according to the degree of the item node in the community. This recommendation method is added to the recommendation algorithm to increase the accuracy of the recommendation,which is helpful for the recommended algorithm design of the shopping platform.

相似文献/References:

[1]李方洁 刘希玉.复杂网络维的测量[J].计算机技术与发展,2010,(04):61.
 LI Fang-jie,LIU Xi-yu.Measuring Dimensions for Complex Networks[J].,2010,(10):61.
[2]李晶晶 王红.用复杂网络理论分析电网及大停电事故[J].计算机技术与发展,2008,(10):247.
 LI Jing-jing,WANG Hong.Analysis on Power Grids and Blackouts with Complex Network Theory[J].,2008,(10):247.
[3]惠伟 王红.复杂网络在城市公交网络中的实证分析[J].计算机技术与发展,2008,(11):217.
 HUI Wei,WANG Hong.Empirical Analysis of Complex Networks in Public Traffic Networks[J].,2008,(10):217.
[4]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(10):4.
[5]赵鹏 耿焕同 蔡庆生 王清毅.一种基于加权复杂网络特征的K—means聚类算法[J].计算机技术与发展,2007,(09):35.
 ZHAO Peng,GENG Huan-tong,CAI Qing-sheng,et al.A Novel K- means Clustering Algorithm Based on Weighted Complex Networks Feature[J].,2007,(10):35.
[6]顾亦然 谢鸿飞 李金发.移动通信网络中人类行为动力学的研究[J].计算机技术与发展,2010,(09):57.
 GU Yi-ran,XIE Hong-fei,LI Jin-fa.Studies Based on Complex Network and Dynamics of Human Behavior in MC Network[J].,2010,(10):57.
[7]顾亦然 李金发 谢鸿飞.阵发特性影响因素的研究[J].计算机技术与发展,2010,(09):168.
 GU Yi-ran,LI Jin-fa,XIE Hong-fei.Study on Influence Factors of Characteristic of Burst[J].,2010,(10):168.
[8]何明东 熊建斌 李振坤.基于复杂网络的软件开发方法研究[J].计算机技术与发展,2011,(06):59.
 HE Ming-dong,XIONG Jian-bin,LI Zhen-kun.Complex Network-Based Software Development Method Research[J].,2011,(10):59.
[9]王泽洪 闵妍妮 刘名扬 谭韵天.Pub/Sub系统中基于免疫的新型路由算法[J].计算机技术与发展,2012,(02):6.
 WANG Ze-hong,MIN Yan-ni,LIU Ming-yang,et al.A New Immunity-Based Routing Strategy in Pub/Sub System[J].,2012,(10):6.
[10]王显飞 陈梅 李小天.基于约束的旅游推荐系统的研究与设计[J].计算机技术与发展,2012,(02):141.
 WANG Xian-fei,CHEN Mei,LI Xiao-tian.Research and Design of Constraint-Based Travel Recommendation System[J].,2012,(10):141.

更新日期/Last Update: 2019-10-10