[1]张振宇,朱培栋,赵东升.一种用于病案相似性度量的弱监督学习算法[J].计算机技术与发展,2019,29(09):1-6.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 001]
 ZHANG Zhen-yu,ZHU Pei-dong,ZHAO Dong-sheng.A Weakly Supervised Machine Learning Algorithm Applied to Similarity Measure of Medical Records[J].,2019,29(09):1-6.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 001]
点击复制

一种用于病案相似性度量的弱监督学习算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年09期
页码:
1-6
栏目:
智能、算法、系统工程
出版日期:
2019-09-10

文章信息/Info

Title:
A Weakly Supervised Machine Learning Algorithm Applied to Similarity Measure of Medical Records
文章编号:
1673-629X(2019)09-0001-06
作者:
张振宇1 朱培栋12 赵东升3
1. 国防科技大学 计算机学院,湖南 长沙 410073; 2. 长沙学院 电子信息与电气工程学院,湖南 长沙 410022; 3. 军事医学科学院 网络信息中心,北京 100039
Author(s):
ZHANG Zhen-yu1 ZHU Pei-dong12 ZHAO Dong-sheng3
1. School of Computer,National University of Defense Technology,Changsha 410073,China; 2. School of Electronic Information and Electrical Engineering,Changsha University,Changsha 410022,China; 3. Network Information Center,Academy of Military Medical Sciences,Beijing 100039,China
关键词:
弱监督机器学习病案相似性理论模型
Keywords:
weak supervisionmachine learningmedical records similaritytheoretical model
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 09. 001
摘要:
弱监督机器学习算法解决标签模糊类的问题具有更好的优势,该类算法缓解了数据标签的精度要求。 病案的相似性度量就是这类问题,其对医疗数据的应用有着极其重要的基础性作用。 鉴于现有病案相似性度量算法通常只基于病理关系的理论规则模型提出,忽略了数据本身包含的信息,文中提出一种弱监督机器学习算法应用于病案相似性度量。该算法首先基于多指标概率分配的方法进行病案组的构建,避免陷入局部最优的情况;然后根据理论模型进行标签赋值,充分利用理论信息;最后通过输入、损失函数、学习模型的分析,从机器学习的角度进行病案的相似性度量。 与经典病案相似性度量算法相比,该算法提高了病案相似性度量的准确性,解决了高成本标签的问题。
Abstract:
The weakly supervised machine learning algorithm has a better advantage in solving the label fuzzy class problem,which alleviates the accuracy requirements of data labels. The similarity measure of medical records is such a problem,which plays a significant role in medical applications. Given that existing medical records similarity measurement algorithm is usually based on the theoretical rule model under pathological relationship,this method ignores the information of the data itself. We propose a weakly supervised machine learning algorithm applied to the similarity measure of medical records. To start with,a medical record group is constructed based on a multi-index probability allocation method to avoid local optimal problems. In addition,the label assignment is conducted according to the theoretical model,which makes full use of the theoretical information. At last,through the analysis of input,loss function and learning model,the similarity measure of medical records is carried out from the perspective of machine learning. Compared with classical medical records similarity measurement algorithm,the algorithm proposed improves the accuracy and solves the problem of high cost labels.

相似文献/References:

[1]陈全 赵文辉 李洁 江雨燕.选择性集成学习算法的研究[J].计算机技术与发展,2010,(02):87.
 CHEN Quan,ZHAO Wen-hui,LI Jie,et al.Research of Selective Ensemble Learning Algorithm[J].,2010,(09):87.
[2]黄秀丽 王蔚.SVM在非平衡数据集中的应用[J].计算机技术与发展,2009,(06):190.
 HUANG Xiu-li,WANG Wei.Application of SVM in Imbalances Dataset[J].,2009,(09):190.
[3]鲁晓南 接标.一种基于个性化邮件特征的反垃圾邮件系统[J].计算机技术与发展,2009,(08):155.
 LU Xiao-nan,JIE Biao.An Individual Anti- Spam Technology[J].,2009,(09):155.
[4]张苗 张德贤.多类支持向量机文本分类方法[J].计算机技术与发展,2008,(03):139.
 ZHANG Miao,ZHANG De-xian.Research on Text Categorization Based on. M- SVMs[J].,2008,(09):139.
[5]汤萍萍 王红兵.基于强化学习的Web服务组合[J].计算机技术与发展,2008,(03):142.
 TANG Ping-ping,WANG Hong-bing.Web Service Composition Based on Reinforcement -Learning[J].,2008,(09):142.
[6]杨雪洁 赵姝 张燕平.基于商空间理论的冬小麦产量预测和分析[J].计算机技术与发展,2008,(03):249.
 YANG Xue-jie,ZHAO Shu,ZHANG Yan-ping.Analysis on Winter Wheat Yield Based on Quotient Space Theory[J].,2008,(09):249.
[7]汤伟 程家兴 纪霞.一种基于概率推理的邮件过滤系统的研究与设计[J].计算机技术与发展,2008,(08):76.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Probability Inference[J].,2008,(09):76.
[8]孙海虹 丁华福.基于模糊粗糙集的Web文本分类[J].计算机技术与发展,2010,(07):21.
 SUN Hai-hong,DING Hua-fu.Web Document Classification Based on Fuzzy-Rough Set[J].,2010,(09):21.
[9]汤伟 程家兴 纪霞.统计学理论在邮件分类中的应用研究[J].计算机技术与发展,2008,(12):231.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Statistical Learning Theory[J].,2008,(09):231.
[10]张高胤 谭成翔 汪海航.基于K-近邻算法的网页自动分类系统的研究及实现[J].计算机技术与发展,2007,(01):21.
 ZHANG Gao-yin,TAN Cheng-xiang,WANG Hai-hang.Design and Implementation of Web Page Automation Classification System Based on K- Nearest Neighbor Algorithm[J].,2007,(09):21.

更新日期/Last Update: 2019-09-10