[1]牛 斌,吴 鹏,马 利,等.一种基于生成对抗网络的行为数据集扩展方法[J].计算机技术与发展,2019,29(07):43-48.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 009]
 NIU Bin,WU Peng,MA Li,et al.A Behavior Data Set Extension Method Based on Generative Adversarial Network[J].,2019,29(07):43-48.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 009]
点击复制

一种基于生成对抗网络的行为数据集扩展方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年07期
页码:
43-48
栏目:
智能、算法、系统工程
出版日期:
2019-07-10

文章信息/Info

Title:
A Behavior Data Set Extension Method Based on Generative Adversarial Network
文章编号:
1673-629X(2019)07-0043-06
作者:
牛 斌吴 鹏马 利刘景巍
辽宁大学 信息学院,辽宁 沈阳 110036
Author(s):
NIU BinWU PengMA LiLIU Jing-wei
School of Information,Liaoning University,Shenyang 110036,China
关键词:
数据生成深度学习循环神经网络生成式对抗网络
Keywords:
data generationdeep learningrecurrent neural networksgenerative adversarial network
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 07. 009
摘要:
深度学习作为人工神经网络的分支,在图像识别领域有广泛的应用,但其数据集的不足导致模型学习不够完善。通过对深度学习的数据规模要求进行分析,针对人体行为识别中的应用,发现人体数据集的采集工作是一个极具耗时耗力的工程,很难满足目前深度学习网络的需求。 为了解决这一难题,提出了一种依靠原有的小规模数据集产生大量可靠数据集的半监督深度学习模型。 通过将循环神经网络和生成式对抗网络相结合的方法使循环神经网络学习到数据的序列关系和特征,使生成式对抗网络产生合理数据进而扩展人体行为数据集。 依靠该网络结构,可以很好地分析出采集数据的特征,并且依据这些特征可以生成大量的合理的数据,后经过数据处理等工作,形成可用于模型训练的可靠数据集,缓解了深度学习工作中数据集紧缺的问题。
Abstract:
As a branch of artificial neural network,deep learning has a wide range of applications in the field of image recognition. The lack of data sets leads to incomplete model learning. Through the analysis of the data size requirements of deep learning,it is found that the collection of human data sets is a very time-consuming and labor-intensive project for the application of human behavior recognition. It is difficult to meet the needs of the current deep learning network. To solve this problem,we propose a semi-supervised deep learning model that relies on the original small-scale data set to generate a large number of reliable data sets. By combining the cyclic neural network and the generative confrontation network,the cyclic neural network learns the sequence relationship and characteristics of the data,so that the generation-oriented network generates reasonable data and then expands the human behavior data set. Relying on this network structure,the characteristics of the collected data can be well analyzed,and a large amount of reasonable data can be generated according to these features,and then processed through data processing to form a reliable data set that can be used for model training, thereby alleviating the shortage of data sets in deep learning work.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(07):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(07):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(07):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(07):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(07):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(07):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(07):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(07):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(07):7.

更新日期/Last Update: 2019-07-10