[1]李吉祺,黄 刚.提取关键字改进协同过滤算法的研究与应用[J].计算机技术与发展,2019,29(06):154-158.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 032]
 LI Ji-qi,HUANG Gang.Research and Application of Improved Collaborative Filtering Algorithm of Keyword Extraction[J].,2019,29(06):154-158.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 032]
点击复制

提取关键字改进协同过滤算法的研究与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年06期
页码:
154-158
栏目:
应用开发研究
出版日期:
2019-06-10

文章信息/Info

Title:
Research and Application of Improved Collaborative Filtering Algorithm of Keyword Extraction
文章编号:
1673-629X(2019)06-0154-05
作者:
李吉祺黄 刚
南京邮电大学 计算机学院,江苏 南京 210000
Author(s):
LI Ji-qiHUANG Gang
School of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210000,China
关键词:
推荐系统协同过滤稀疏矩阵词频与逆文本频率指数混合推荐
Keywords:
recommendation systemcollaborative filteringsparse matrixTF-IDFmixed recommendation
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 06. 032
摘要:
协同过滤算法在遇到数据稀疏性问题时,其相似度计算过程会受到很大的影响,导致推荐结果不准确,影响推荐系统用户体验。 而影评网站的影评往往很好地概括了电影的特征,从影评网站的影评文字中可以使用关键字提取算法提取特征来进行电影间的相似性计算。 TF-IDF 是一种高效而常用的关键词提取技术,其通过特定文档中词的相对频率和整个文档语料库中该词的反比例进行比较,最终得出该篇文章的关键字。 利用文本信息提取关键字,进而通过文章的关键字词进行文章的相似度计算,可以有效地改进评价矩阵稀疏的问题。 通过爬取电影的评价文字来进行关键字提取,改进评分矩阵较稀疏的电影的相似度计算,可以弥补稀疏矩阵的缺陷。 实验结果表明,该算法有效提高了准确率、召回率和覆盖率,证明了算法的可行性。
Abstract:
When the collaborative filtering algorithm is influenced by data sparsity,its similarity calculation process will be greatly affected,resulting in inaccurate recommendation and affecting the user experience of the recommendation system. The movie reviews on movie review websites often summarize the characteristics of movie,where keyword extraction algorithm can be used to extract features to calculate the similarity between movies. The TF-IDF is an efficient and commonly used keyword extraction technique,which compares the relative frequency of words in a specific document with the inverse proportion of the words in the entire document,and finally derives the keywords of the article. Using text information to extract keywords and then calculating the similarity of articles through the keyword words of the article can effectively improve the sparse evaluation matrix. To make up for the defects of the sparse matrix,the keyword can be extracted by crawling the movie reviews of the movie. Experiment shows that the proposed algorithm,which is proved to be feasible,can effectively improve the accuracy,recall rate and coverage.

相似文献/References:

[1]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(06):69.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(06):182.
[3]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(06):4.
[4]高静 应吉康.基于人工免疫系统的推荐系统[J].计算机技术与发展,2007,(05):180.
 GAO Jing,YING Ji-kang.A Recommendation System Based on Artificial Immune System[J].,2007,(06):180.
[5]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(06):18.
[6]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(06):73.
[7]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(06):210.
[8]华铨平.基于FNN的家纺产品个性化推荐系统的研究[J].计算机技术与发展,2011,(09):183.
 HUA Quan-ping.Research on Personalized Recommendation System of Textile Products Used by Family Based on FNN[J].,2011,(06):183.
[9]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(06):73.
[10]马言春 彭志平.基于市场机制的云服务管理研究[J].计算机技术与发展,2012,(03):214.
 MA Yan-chun,PENG Zhi-ping.Research on Cloud Service Management Based on Market Mechanism[J].,2012,(06):214.
[11]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(06):67.
[12]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(06):70.
[13]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(06):66.
[14]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(06):42.
[15]程高伟,丁亦喆,吴振强. 结合用户评分和项目标签的协同过滤算法[J].计算机技术与发展,2015,25(03):71.
 CHENG Gao-wei,DING Yi-zhe,WU Zhen-qiang. Collaborative Filtering Algorithm Combined User Ratings with Item Tags[J].,2015,25(06):71.
[16]张晓琳,付英姿,褚培肖. 杰卡德相似系数在推荐系统中的应用[J].计算机技术与发展,2015,25(04):158.
 ZHANG Xiao-lin,FU Ying-zi,CHU Pei-xiao. Application of Jaccard Similarity Coefficient in Recommender System[J].,2015,25(06):158.
[17]周莹莹,王晓军. 利用离群点算法预处理协同过滤推荐系统数据[J].计算机技术与发展,2015,25(09):129.
 ZHOU Ying-ying,WANG Xiao-jun. Pre-filtering Data of Collaborative Filtering Recommendation System by Outliers Algorithm[J].,2015,25(06):129.
[18]陈宗言,颜俊. 基于稀疏数据预处理的协同过滤推荐算法[J].计算机技术与发展,2016,26(07):59.
 CHEN Zong-yan,YAN Jun. Collaborative Filtering Recommendation Algorithm Based on Sparse Data Pre-processing[J].,2016,26(06):59.
[19]张天杰,曹苏燕,闫世洋. 基于项目近邻的约束概率矩阵分解算法[J].计算机技术与发展,2016,26(10):64.
 ZHANG Tian-jie,CAO Su-yan,YAN Shi-yang. A Constrained Probabilistic Matrix Factorization Algorithm Based on Item-neighborhood[J].,2016,26(06):64.
[20]张应辉,司彩霞. 基于用户偏好和项目特征的协同过滤推荐算法[J].计算机技术与发展,2017,27(01):16.
 ZHANG Ying-hui,SI Cai-xia. A Collaborative Filtering Algorithm Based on Interest of User and Attributes of Item[J].,2017,27(06):16.

更新日期/Last Update: 2019-06-10