[1]翟航天,汪学明.基于隐式反馈 LDA 模型的协同推荐算法研究[J].计算机技术与发展,2019,29(06):7-12.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 002]
 ZHAI Hang-tian,WANG Xue-ming.Research on Collaborative Recommendation Algorithm Based on Implicit Feedback LDA Model[J].,2019,29(06):7-12.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 002]
点击复制

基于隐式反馈 LDA 模型的协同推荐算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年06期
页码:
7-12
栏目:
智能、算法、系统工程
出版日期:
2019-06-10

文章信息/Info

Title:
Research on Collaborative Recommendation Algorithm Based on Implicit Feedback LDA Model
文章编号:
1673-629X(2019)06-0007-06
作者:
翟航天汪学明
贵州大学 计算机科学与技术学院,贵州 贵阳 550025
Author(s):
ZHAI Hang-tianWANG Xue-ming
School of Computer Science and Technology,Guizhou University,Guiyang 550025,China
关键词:
隐式反馈标签采样LDA 建模协同过滤个性化推荐
Keywords:
implicit feedbacktag samplingLDA modelingcollaborative filteringpersonalized recommendation
分类号:
TP301.6
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 06. 002
摘要:
传统基于用户和基于标签的协同过滤推荐算法仅采用用户评分显式信息进行分析,浪费掉大量的隐式反馈数据。为将隐式反馈数据加以利用,提出一种用户隐式反馈数据与资源标签相结合的协同过滤推荐算法。 对资源-标签利用Gibbs Sampling 算法进行采样分析,挖掘推荐系统中资源的主题并建立 Latent Dirichlet Allocation (LDA)模型,将隐式反馈数据中的用户行为赋予主题标签以此获取用户标签偏好,并与资源标签计算出的资源相似度相结合,预测用户个性化偏好。 在 Retailrocket 网站行为数据集上的实验结果表明,相较于传统基于隐式反馈和基于标签的协同过滤推荐算法,该算法能有效地解决用户标签模糊和资源主题分析存在偏差的问题,提高个性化推荐准确度。
Abstract:
Traditional user-based and label-based collaborative filtering recommendation algorithms only use user ratings explicit information to analyze and waste a lot of implicit feedback data. In order to make use of implicit feedback data, we propose a collaborative filtering recommendation algorithm combining user implicit data with resource labels. The resource label is sampled and analyzed by Gibbs Sampling,the theme of the resource in the recommendation system is excavated and the Latent Dirichlet Allocation(LDA) model is established. The user behaviors in the implicit feedback data are given to the subject label to obtain the user label preference,and the resource similarity calculated by the resource label is combined to predict the user personalized preferences. The experiment on the Retailrocket website behavior data set shows that compared with the traditional implicit feedback and label-based collaborative filtering recommendation algorithm,the proposed algorithm can effectively solve the problem of user label blur and resource topic analysis deviation,and improve the accuracy of personalized recommendation.

相似文献/References:

[1]程 涛,崔宗敏,喻 静.一种用于视频推荐的基于 LDA 的深度学习模型[J].计算机技术与发展,2020,30(08):86.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 014]
 CHENG Tao,CUI Zong-min,YU Jing.A LDA-based Topic Attribute-aware in-Depth Learning Model for Video Recommendation[J].,2020,30(06):86.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 014]
[2]夏 翔,刘 姜*,倪 枫,等.基于隐式反馈和加权用户偏好的推荐算法[J].计算机技术与发展,2024,34(03):140.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 021]
 XIA Xiang,LIU Jiang*,NI Feng,et al.Recommendation Algorithms Based on Implicit Feedback and Weighted User Preferences[J].,2024,34(06):140.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 021]

更新日期/Last Update: 2019-06-10