[1]王学军,李有红,李炽平.基于密度自适应聚类数的社区发现谱方法[J].计算机技术与发展,2019,29(05):81-85.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 018]
 WANG Xue-jun,LI You-hong,LI Chi-ping.A Community Detection Spectral Clustering Method Based on Density Adaptive Generation Cluster Number[J].,2019,29(05):81-85.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 018]
点击复制

基于密度自适应聚类数的社区发现谱方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年05期
页码:
81-85
栏目:
智能、算法、系统工程
出版日期:
2019-05-10

文章信息/Info

Title:
A Community Detection Spectral Clustering Method Based on Density Adaptive Generation Cluster Number
文章编号:
1673-629X(2019)05-0081-05
作者:
王学军李有红李炽平
广东工业大学华立学院,广东 广州 511325
Author(s):
WANG Xue-junLI You-hongLI Chi-ping
Huali College Guangdong University of Technology,Guangzhou 511325,China
关键词:
k-means社区发现拉普拉斯矩阵结构相似
Keywords:
k-meanscommunity detectionLaplacian matrixstructural similarity
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 05. 018
摘要:
社区结构发现研究可揭示复杂网络中隐藏中观结构,为进一步开展网络的形成和演化研究应用提供依据,如可为智能推荐、舆情控制、电力和交通网络调度等方面提供决策支持数据。 针对复杂网络社区结构挖掘中社区数量难以确定的问题,提出一种基于密度自适应聚类数的社区发现谱方法。 引入谱图分析中比较成熟的谱聚类特征向量分析方法,基于局部节点密度构图,结合网络图的边介数值构造相似矩阵,规范化后进行谱聚类,求得最大特征维度 k 值, k 值即为社区个数。 最后采用 k-means 方法对特征向量空间进行聚类,使得复杂网络社区得以呈现。 在人工 UCI 和真实数据集(southern women data)上的实验表明,与现有谱聚类社区发现算法相比,该方法能自动确定社区个数,能得到划分精度更高的社区。
Abstract:
The study of community structure discovery can reveal the hidden meso-structure in complex network,and provide a basis for further research and application of network formation and evolution, such as providing decision support data for intelligent recommendation,public opinion control,power and traffic network scheduling. In view of the difficulty in determining the number of communities in complex network community structure mining,we propose a community detection spectral clustering method based on density adaptive generation cluster number. Based on the local node density composition,the similarity matrix is constructed with the boundary value of the network graph. After normalization,the spectral clustering is carried out to obtain the maximum characteristic dimension k value which is the number of community. Finally,the k-means method is used to cluster the eigenvector space,which makes the complex network community presented. Experiments on artificial and real data sets (UCI and Southern Women Data) show that this method can automatically determine the number of communities and obtain communities with higher division accuracy compared with the existing spectral clustering algorithm.

相似文献/References:

[1]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(05):58.
[2]李若鹏 李翔 林祥 李建华.基于DK算法的互联网热点主动发现研究与实现[J].计算机技术与发展,2008,(09):1.
 LI Ruo-peng,LI Xiang,LIN Xiang,et al.Discovering Information Hotspots on Initiative over Internet Based on DK Clustering Algorithm[J].,2008,(05):1.
[3]朱云贺 张春海 张博.基于数据分段的K-means的优化研究[J].计算机技术与发展,2010,(11):130.
 ZHU Yun-he,ZHANG Chun-hai,ZHANG Bo.Optimizing Research on K-means Based on Data Partition[J].,2010,(05):130.
[4]何云 李辉 姚能坚 赵榕生.改进K-means算法实现移动通信行为特征分析[J].计算机技术与发展,2011,(06):63.
 HE Yun,LI Hui,YAO Neng-jian,et al.Application of Improved K-Means Algorithm in Mobile Communication Behavioral Characteristic Analysis[J].,2011,(05):63.
[5]黎银环,张剑.改进的 K-means 算法在入侵检测中的应用[J].计算机技术与发展,2013,(01):165.
 LI Yin-huan,ZHANG Jian.Application of Improved K-means Clustering Algorithm in Intrusion Detection[J].,2013,(05):165.
[6]李四海,满自斌.自适应特征权重的K-means聚类算法[J].计算机技术与发展,2013,(06):98.
 LI Si-hai[],MAN Zi-bin[].K-means Clustering Algorithm Based on Adaptive Feature Weighted[J].,2013,(05):98.
[7]耿永政,陈坚.结合图论的JSEG彩色图像分割算法[J].计算机技术与发展,2014,24(05):15.
 GENG Yong-zheng,CHEN Jian.JSEG Color Image Segmentation Algorithm Combining Graph Theory[J].,2014,24(05):15.
[8]张璋,张然,朱东生. 关系数据库中社区发现方法研究[J].计算机技术与发展,2014,24(08):108.
 ZHANG Zhang,ZHANG Ran,ZHU Dong-sheng. Research on Community Discovery Methods in Relational Database[J].,2014,24(05):108.
[9]陈斌,苏一丹,黄山. 基于KM-SMOTE和随机森林的不平衡数据分类[J].计算机技术与发展,2015,25(09):17.
 CHEN Bin,SU Yi-dan,HUANG Shan. Classification of Imbalance Data Based on KM-SMOTE Algorithm and Random Forest[J].,2015,25(05):17.
[10]叶雨晴,邱晓晖.基于SIFT 与 K-means 的图像复制粘贴篡改检测[J].计算机技术与发展,2018,28(06):121.[doi:10.3969/ j. issn.1673-629X.2018.06.027]
 YE Yu-qing,QIU Xiao-hui.Copy-move Forgery Detection Based on SIFT and K-means Clustering[J].,2018,28(05):121.[doi:10.3969/ j. issn.1673-629X.2018.06.027]

更新日期/Last Update: 2019-05-10