[1]冯小建,马明栋,王得玉.基于改进的 Adaboost 算法的人脸检测系统[J].计算机技术与发展,2019,29(03):89-92.[doi:10.3969/ j. issn.1673-629X.2019.03.019]
 FENG Xiao-jian,MA Ming-dong,WANG De-yu.Face Detection System Based on Improved Adaboost Algorithm[J].,2019,29(03):89-92.[doi:10.3969/ j. issn.1673-629X.2019.03.019]
点击复制

基于改进的 Adaboost 算法的人脸检测系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年03期
页码:
89-92
栏目:
智能、算法、系统工程
出版日期:
2019-03-10

文章信息/Info

Title:
Face Detection System Based on Improved Adaboost Algorithm
文章编号:
1673-629X(2019)03-0089-04
作者:
冯小建1马明栋2王得玉2
1. 南京邮电大学 通信与信息工程学院,江苏 南京 210003;2. 南京邮电大学 地理与生物信息学院,江苏 南京 210003
Author(s):
FENG Xiao-jian1 MA Ming-dong 2 WANG De-yu2
1. School of Telecommunications & Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;2. School of Geographical and Biological Information,Nanjing University of Posts and Telecommunications, Nanjing 210003,Chin
关键词:
AdaboostHaar-Like 特征OpenCV人脸检测肤色检测图像处理
Keywords:
AdaboostHaar-Like featuresOpenCVface detectionskin detectionimage processing
分类号:
TP302
DOI:
10.3969/ j. issn.1673-629X.2019.03.019
摘要:
随着社会的信息化与智能化发展,人脸检测技术在商业、文化等领域扮演着日益重要的角色,社会对人脸检测系统的性能要求也越来越高。 开源计算机视觉库 OpenCV 中实现了众多图像处理算法,其中包括使用 Adaboost 算法训练出Haar 分类器,用以进行高准确率人脸检测。 常用的基于 Haar-Like 特征的 AdaBoost 人脸检测算法还存在着不足之处,例如漏检率和误检率较高,检测效率较低等。 针对这些不足之处,在原有的 Haar-Like 特征集中加入新的符合人脸器官分布的 Haar-Like 特征,以提高检测率,降低虚警率。 并通过引进肤色检测技术来筛选人体肤色区域作为备选区域,剔除图片中大部分的非肤色区域,以提高检测效率。 通过测试与性能对比,改进的人脸检测系统具有更好的准确率和更高的检测效率。
Abstract:
With the development of social informatization and intelligence,face detection technology plays an increasingly important role in business,culture and other fields. The performance requirements of face detection systems for society are also increasing. Open sourcecomputer vision library OpenCV implements a number of image processing algorithms,including Adaboost algorithm to train Haar classifier for high-accuracy face detection. The commonly used Haar-Like feature-based AdaBoost face detection algorithm still has somedisadvantages,such as high missed detection rate and false detection rate and low detection efficiency. In order to make up these deficiencies,we add a new Haar-Like feature that matches the distribution of human face in the original Haar-Like feature set to increase the detection rate and reduce the false alarm rate. And through the introduction of skin detection technology to screen the human skin area as an alternative area,remove most of the non-skin color areas in the picture,in order to improve detection efficiency. Through testing and performance comparison,the improved face detection system has better accuracy and higher detection efficiency.

相似文献/References:

[1]王晶 杨煜.基于边缘方向直方图的Adaboost人脸检测[J].计算机技术与发展,2007,(12):5.
 WANG Jing,YANG Yu.Adaboost for Face Detection Based on Edge Orientation Histograms[J].,2007,(03):5.
[2]郝维来 郑同山.基于AdaBoost的集成分类器在电信增值业务中的应用[J].计算机技术与发展,2011,(03):197.
 HAO Wei-lai,ZHENG Tong-shan.Ensemble Classification Based on AdaBoost Algorithm and Its Application to Value-Added Services of Telecommunication Industry[J].,2011,(03):197.
[3]牛杰 钱堃.基于多尺度-多形状HOG特征的行人检测方法[J].计算机技术与发展,2011,(09):99.
 NIU Jie,QIAN Kun.Pedestrian Detection Based on Multi-Scale and Multi-Shape HOG Features[J].,2011,(03):99.
[4]徐丽珍.AdaBoost车牌检测算法的优化与实现[J].计算机技术与发展,2013,(06):86.
 XU Li-zhen.Optimization and Realization of AdaBoost-based License Plate Detection Algorithm[J].,2013,(03):86.
[5]郑权,刘循,魏海明.基于学习的霍夫变换线段组物体检测算法[J].计算机技术与发展,2014,24(01):26.
 ZHENG Quan,LIU Xun,WEI Hai-ming.An Object Detection Algorithm of Hough Transform Line Segmentation Groups Based on Learning[J].,2014,24(03):26.
[6]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(03):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[7]潘艺,李玉恵,杨敏,等. 基于DCT域的车标定位方法研究[J].计算机技术与发展,2016,26(04):70.
 PAN Yi,LI Yu-hui,YANG Min,et al. Research on Vehicle Logo Localization Method Based on DCT Domain[J].,2016,26(03):70.
[8]周 康,曲卫东,杨艺琛.基于增强 BiLSTM 的网络文章核心实体识别[J].计算机技术与发展,2021,31(01):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 002]
 ZHOU Kang,QU Wei-dong,YANG Yi-chen.Core Entity Recognition of Web Articles Based on Enhanced BiLSTM[J].,2021,31(03):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 002]

更新日期/Last Update: 2019-03-10