[1]何继燕,郜鲁涛,赵红波.一种封闭区域人数智能监控统计系统[J].计算机技术与发展,2019,29(02):212-215.[doi:10.3969/j.issn.1673-629X.2019.02.044]
 HE Jiyan,GAO Lutao,ZHAO Hongbo.An Intelligent Monitoring and Statistical System Based on Number of People in Closed Area[J].,2019,29(02):212-215.[doi:10.3969/j.issn.1673-629X.2019.02.044]
点击复制

一种封闭区域人数智能监控统计系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年02期
页码:
212-215
栏目:
应用开发研究
出版日期:
2019-02-10

文章信息/Info

Title:
An Intelligent Monitoring and Statistical System Based on Number of People in Closed Area
文章编号:
1673-629X(2019)02-0212-04
作者:
何继燕郜鲁涛赵红波
云南农业大学,云南 昆明 650201
Author(s):
HE Ji-yanGAO Lu-taoZHAO Hong-bo
Yunnan Agriculture University,Kunming 650201,China
关键词:
目标跟踪人物统计人物分割背景差分
Keywords:
target trackingfigure counting systemcharacter segmentationbackground difference
分类号:
TP302
DOI:
10.3969/j.issn.1673-629X.2019.02.044
摘要:
传统安防视频监控系统数据存储空间非常巨大,人工查找异常事件或行为等有效的视频信息困难,产生了应用视频智能监控技术来实现更高效的自动监控并配以报警功能,对视频序列中的运动目标进行检测,实现检测区域的人数统计,使事后取证的被动防守变为主动防御报警的需求。在综合运用数字图像处理理论、目标跟踪算法等的基础上,构建了一个人物分割与人群跟踪相结合的人物计数系统。以基于背景差分算法与帧间差分算法相结合的方式,建立视频目标分割算法,包括对目标进行检测并粗略分割,分单人和多人计数。实现对视频图像的保存读取,前景单人与群体的提取和分割。该方法确能为智能监控的实现提供一种可行的路径
Abstract:
Due to large data storage space and difficult finding of valid video information manually such as abnormal events or activities for traditional security video monitoring system,the requirements applying intelligent monitoring technology to achieve more efficient au-tomatic monitoring with alarm function,detection of moving targets in video sequence to realize the number statistics of people in the de-tection area,which makes the passive defense after the forensics into active defense alarm,are produced. Based on the digital image pro-cessing theory and target tracking algorithm,we construct a figure counting system in combination with character segmentation and crowdtracking. A video object segmentation algorithm is established on the basis of combining background difference algorithm and inter-framedifference algorithm,including detection and rough segmentation of object,single person counting and multi-person counting. The savingand reading of video images,and the extraction and segmentation of foreground single and group,are implemented. This method can pro-vide a feasible path for the implementation of intelligent monitoring.

相似文献/References:

[1]刘翔 吴谨 祝愿博 康晓晶.基于视频序列的目标检测与跟踪技术研究[J].计算机技术与发展,2009,(11):179.
 LIU Xiang,WU Jin,ZHU Yuan-bo,et al.A Study of Object Detecting and Tracking Based on Video Sequences[J].,2009,(02):179.
[2]雷云 王夏黎 孙华.基于视频的交通目标跟踪方法研究[J].计算机技术与发展,2010,(07):44.
 LEI Yun,WANG Xia-li,SUN Hua.The Research about Transport Target Tracking Based on Video[J].,2010,(02):44.
[3]谢之宇 蒋晓瑜 汪熙 裴闯.基于多线索融合的目标跟踪算法研究[J].计算机技术与发展,2011,(03):125.
 XIE Zhi-yu,JIANG Xiao-yu,WANG Xi,et al.A Target Tracking Algorithm Research Based on Multi-Cue Fusion[J].,2011,(02):125.
[4]尤天来 周海徽[].红外目标跟踪技术研究[J].计算机技术与发展,2011,(10):140.
 YOU Tian-lai,ZHOU Hai-hui.Research of Infrared Target Tracking Technology[J].,2011,(02):140.
[5]赵侃 漆德宁.基于UKF滤波的FDOA和TDOA联合定位跟踪算法[J].计算机技术与发展,2012,(05):127.
 ZHAO Kan,QI De-ning.A Tracking TDOA/FDOA Joint Location Algorithm Based on UKF[J].,2012,(02):127.
[6]姚放吾 许辰铭.基于目标质心的Meanshift跟踪算法[J].计算机技术与发展,2012,(06):104.
 YAO Fang-wu,XU Chen-ming.A Meanshift Tracking Algorithm Based on Centroid[J].,2012,(02):104.
[7]张璐,张国良,张维平,等.改进IMM算法在机器人目标跟踪中的应用[J].计算机技术与发展,2013,(02):149.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Application of Improved IMM Algorithm in Robot Target Tracking[J].,2013,(02):149.
[8]吴佳家,高珏,李敏,等.基于均值漂移和卡尔曼滤波的跟踪算法研究[J].计算机技术与发展,2014,24(01):5.
 WU Jia-jia[,GAO Jue[],LI Min[],et al.Research on Target Tracking Algorithm Based on Mean Shift and Kalman Filter[J].,2014,24(02):5.
[9]郝杰,任静. 高超声速飞行器交互式多模型跟踪算法仿真[J].计算机技术与发展,2015,25(02):204.
 HAO Jie,REN Jing. Tracking Algorithm Simulation of Interactive Multiple Model for Hypersonic Flight Vehicle[J].,2015,25(02):204.
[10]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(02):221.

更新日期/Last Update: 2019-02-10