[1]孙成立,王海武.生成式对抗网络在语音增强方面的研究[J].计算机技术与发展,2019,29(02):152-156.[doi:10.3969/j.issn.1673-629X.2019.02.032]
 SUN Chengli,WANG Haiwu.Research on Speech Enhancement of Generative Adversarial Networks[J].,2019,29(02):152-156.[doi:10.3969/j.issn.1673-629X.2019.02.032]
点击复制

生成式对抗网络在语音增强方面的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年02期
页码:
152-156
栏目:
应用开发研究
出版日期:
2019-02-10

文章信息/Info

Title:
Research on Speech Enhancement of Generative Adversarial Networks
文章编号:
1673-629X(2019)02-0152-05
作者:
孙成立王海武
南昌航空大学 信息工程学院,江西 南昌 330063
Author(s):
SUN Cheng-liWANG Hai-wu
School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China
关键词:
人工智能生成式对抗网络生成器判别器语音增强
Keywords:
artificial intelligenceGANgeneratordiscriminatorspeech enhancement
分类号:
TP31
DOI:
10.3969/j.issn.1673-629X.2019.02.032
摘要:
伴随着人工智能的兴起,各种深度学习模型应运而生,生成式对抗网络(generative adversarial networks,GAN)作为其中的一种深度学习模型成为了研究热点。GAN 已成功应用在图像处理中,但将其应用在语音增强方面是需要研究的问题。GAN 应用在语音增强的研究方法与 GAN 的实质是一样的,是通过构造两个模型,即生成模型(generative model)和判别模型(discriminative model),也叫做生成器(generator)和判别器(discriminator)。两者通过互相竞争、对抗的形式来学习训练,GAN 最终要实现的目标是生成新的数据,即实现去噪。对 GAN 在语音增强方面的应用进行了研究,提出了使用传统的 GAN 数学模型用于语音增强进行建模,同时改进了 GAN 的数学模型并加入了稀疏因式,将 GAN 增强后的语音与其他传统的语音增强方法进行对比。实验结果表明,使用 GAN 增强后的语音的 segSNR 和 PESQ 的得分要比传统的语音增强方法的得分高,从而证明 GAN 比其他传统的语音增强方法更具优越性。
Abstract:
Along with the rise of artificial intelligence,all kinds of deep learning models emerge. Generative adversarial networks (GAN) as a deep learning model has become a research hotspot. GAN has been successfully applied in image processing,but its application in speech enhancement is a problem that needs to be studied. GAN’s research method in speech enhancement is the same as the essence of GAN,which is based on the construction of two models,namely,generative model and discriminative model,also known as generator and discriminator. They learn and train by mutual competition and confrontation. The ultimate goal of GAN is to generate new data,that is realization of noise removal. The application of GAN in speech enhancement is studied,and the traditional GAN mathematical modeling is proposed for speech enhancement. At the same time,the mathematical model of GAN is improved and sparse factors are added. GAN enhanced speech is compared with other traditional speech enhancement methods. Experiment shows that segSNR and PESQ score of GAN enhanced voice are higher than that of traditional speech enhancement methods,which proves that GAN is more advantageous than other traditional speech enhancement methods.

相似文献/References:

[1]张春飞 李万龙 郑山红.Agent技术在智能教学系统中的应用与研究[J].计算机技术与发展,2009,(05):30.
 ZHANG Chun-fei,LI Wan-long,ZHENG Shan-hong.Application and Research of Agent Technology in Intelligent Tutoring System[J].,2009,(02):30.
[2]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(02):76.
[3]张春飞 郑山红 李万龙.基于Agent技术的医疗信息整合研究[J].计算机技术与发展,2009,(10):250.
 ZHANG Chun-fei,ZHENG Shan-hong,LI Wan-long.Research on Integration of Healthcare Enterprise Based on Agent Technology[J].,2009,(02):250.
[4]杜秀全 程家兴.博弈算法在黑白棋中的应用[J].计算机技术与发展,2007,(01):216.
 DU Xiu-quan,CHENG Jia-xing.Game- Playing Algorithm in Black and White Chess Application[J].,2007,(02):216.
[5]孙锦 冯勤超.创造力支持系统[J].计算机技术与发展,2007,(03):138.
 SUN Jin,FENG Qin-chao.Creativity Support System[J].,2007,(02):138.
[6]吉张媛 何华灿.模糊Prolog系统[J].计算机技术与发展,2006,(02):123.
 JI Zhang-yuan,HE Hua-can.Fuzzy Prolog System[J].,2006,(02):123.
[7]丁莹.研究人工智能的一条新途径[J].计算机技术与发展,2012,(03):133.
 DING Ying.A New Avenue of Researching on AI[J].,2012,(02):133.
[8]张代远[].一类新型改进的广义蚁群优化算法[J].计算机技术与发展,2012,(06):39.
 ZHANG Dai-yuan.A New Improved Generalized Ant Colony Optimization Algorithm[J].,2012,(02):39.
[9]于尚超 李阳 王鹏.基于拼凑替换的定理机器证明的研究与实现[J].计算机技术与发展,2012,(06):135.
 YU Shang-chao,LI Yang,WANG Peng.Research and Realization of Theorem Proving Based on Combination and Replace[J].,2012,(02):135.
[10]朱志慧 李雷 种冬梅.改进的BT—SVM应用于电力系统SSA[J].计算机技术与发展,2012,(09):157.
 ZHU Zhi-hui,LI Lei,CHONG Dong-mei.Improved Binary Tree Support Vector Machine and Its Application to Power System Static Security Assessment[J].,2012,(02):157.
[11]于海浩,韩中元,孔蕾蕾,等.计算机艺术的创造性[J].计算机技术与发展,2020,30(09):100.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 018]
 YU Hai-hao,HAN Zhong-yuan,KONG Lei-lei,et al.Creativity of Computer Art[J].,2020,30(02):100.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 018]

更新日期/Last Update: 2019-02-10