[1]张聪品,方滔,刘昱良.基于LSTM-CRF命名实体识别技术的研究与应用[J].计算机技术与发展,2019,29(02):106-108.[doi:10.3969/j.issn.1673-629X.2019.02.022]
 ZHANG Congpin,FANG Tao,LIU Yuliang.Research and Application of Named Entity Recognition Based on LSTM-CRF[J].,2019,29(02):106-108.[doi:10.3969/j.issn.1673-629X.2019.02.022]
点击复制

基于LSTM-CRF命名实体识别技术的研究与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年02期
页码:
106-108
栏目:
智能、算法、系统工程
出版日期:
2019-02-10

文章信息/Info

Title:
Research and Application of Named Entity Recognition Based on LSTM-CRF
文章编号:
1673-629X(2019)02-0106-03
作者:
张聪品方滔刘昱良
河南师范大学 计算机与信息工程学院,河南 新乡 453007
Author(s):
ZHANG Cong-pinFANG TaoLIU Yu-liang
School of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,China
关键词:
长短时记忆神经网络条件随机场命名实体电子病历
Keywords:
long and short time memory neural networkconditional random fieldnamed entityelectronic medical record
分类号:
TP319
DOI:
10.3969/j.issn.1673-629X.2019.02.022
摘要:
随着深度神经网络的发展,深度学习不仅占据了模式识别等领域的统治地位,而且已应用到自然语言处理的各个方面,如中文命名实体识别。对电子病历中的命名实体进行识别时,构建了内嵌条件随机场的长短时神经网络模型,使用长短时神经网络隐含层的上下文向量作为输出层标注的特征,使用内嵌的条件随机场模型表示标注之间的约束关系。该模型识别出了电子病历中的身体部位、疾病名称、检查、症状和治疗五类实体,准确率达到 96.29%,精确率达到了 91. 61%,召回率 96.22%,F 值93.85,其中症状这一实体类别,精确率达到 96.08%,召回率 98.98%,F 值 97.51。实验结果表明,内嵌条件随机场的长短时记忆神经网络模型在识别中文命名实体方面是有效的,有助于自动抽取中文电子病历中实体之间的关系、构建医疗知识图谱。
Abstract:
With the development of deep neural network,deep learning not only occupies the dominant position in pattern recognition and other fields,but also has been applied to various aspects of natural language processing,such as Chinese named entity recognition. Whenrecognizing named entities in electronic medical records,we construct a long and short time neural network model with embedded randomfield. The context vector of the hidden layer of long and short time neural networks is used as the feature of output layer annotation,andthe embedded conditional random field model to represent the constraint relationship between the annotations. The model identifies fivetypes of entities,including body parts,disease name,examination,symptom and treatment in the electronic medical record,with accuracyof 96.29%,precision rate of 91.61%,recall rate of 96.22%,and F value of 93.85. For the entity category of symptom,the precision ratereaches 96.08%,recall rate of 98.98%,F value of 97.51. The experiment shows that the proposed model is effective in identifying Chi-nese named entities,which is helpful for the automatic extraction of the relationship between entities in Chinese electronic medical records and the construction of medical knowledge maps.

相似文献/References:

[1]闵华清 黄欣欣 罗荣华.基于激光和视觉信息的机器人目标跟踪方法[J].计算机技术与发展,2010,(04):113.
 MIN Hua-qing,HUANG Xin-xin,LUO Rong-hua.Robot Target Tracking Approach Based on Laser and Vision Information[J].,2010,(02):113.
[2]张春元.基于条件随机场的文本分类模型[J].计算机技术与发展,2011,(07):77.
 ZHANG Chun-yuan.Text Categorization Model Based on Conditional Random Fields[J].,2011,(02):77.
[3]邱莎[] 阿圆 王付艳 丁海燕.基于统计的中文地名自动识别研究[J].计算机技术与发展,2011,(11):35.
 QIU Sha,A Yuan,WANG Fu-yan,et al.Study on Automatic Recognition of Chinese Location Names Based on Statistical Method[J].,2011,(02):35.
[4]楼博文,许歆艺,蔡根,等.智能信息系统中手机产品评论的情感倾向分析[J].计算机技术与发展,2013,(12):22.
 LOU Bo-wen[],XU Xin-yi[],CAI Gen[],et al.Analysis on Sentiment Orientation of Mobile Phone Product Reviews in Intelligent Information System[J].,2013,(02):22.
[5]唐 莉,刘 臣.基于 CRF 和 HITS 算法的特征情感对提取[J].计算机技术与发展,2019,29(07):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
 TANG Li,LIU Chen.Extraction of Feature and Sentiment Word Pair Based on Conditional Random Fields and HITS Algorithm[J].,2019,29(02):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
[6]张泽宇,郭 斌,张太红*.基于 DCNN 的马匹图像分割算法研究[J].计算机技术与发展,2020,30(10):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
 ZHANG Ze-yu,GUO Bin,ZHANG Tai-hong.Research on Horse Image Segmentation Algorithm Based on DCNN[J].,2020,30(02):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
[7]陈 琛,刘小云,方玉华.融合注意力机制的电子病历命名实体识别[J].计算机技术与发展,2020,30(10):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
 CHEN Chen,LIU Xiao-yun,FANG Yu-hua.Named Entity Recognition in Electronic Medical Record Introducing Attention Mechanisms[J].,2020,30(02):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
[8]王 辉,潘俊辉,王浩畅,等.基于深度学习的中文语法错误诊断方法研究[J].计算机技术与发展,2020,30(11):69.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 013]
 WANG Hui,PAN Jun-hui,WANG Hao-chang,et al.Research on Chinese Grammar Error Diagnosis Method Based on Deep Learning[J].,2020,30(02):69.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 013]
[9]胡万亭,郭建英,张继永.一种基于改进 ELMO 模型的组织机构名识别方法[J].计算机技术与发展,2020,30(11):25.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 005]
 HU Wan-ting,GUO Jian-ying,ZHANG Ji-yong.An Organization Name Recognition Method Based on Improved ELMO Model[J].,2020,30(02):25.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 005]
[10]王卫红,吕红燕,曹玉辉,等.基于 BERT 的混合神经网络实体识别方法[J].计算机技术与发展,2021,31(08):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]
 WANG Wei-hong,LYU Hong-yan,CAO Yu-hui,et al.A Hybrid Neural Network Entity Recognition Method Based on BERT Model[J].,2021,31(02):100.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 017]

更新日期/Last Update: 2019-02-10