[1]郑宇晨.基于支持向量机的英文字符识别研究[J].计算机技术与发展,2019,29(01):106-109.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 022]
 ZHENG Yu-chen.Research on English Character Recognition Based on Support Vector Machine[J].,2019,29(01):106-109.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 022]
点击复制

基于支持向量机的英文字符识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年01期
页码:
106-109
栏目:
智能、算法、系统工程
出版日期:
2019-01-10

文章信息/Info

Title:
Research on English Character Recognition Based on Support Vector Machine
文章编号:
1673-629X(2019)01-0106-04
作者:
郑宇晨
四川师范大学 数学与软件科学学院,四川 成都,610068
Author(s):
ZHENG Yu-chen
School of Mathematics and Software Sciences,Sichuan Normal University,Chengdu 610068,China
关键词:
手写英文字符识别 数据挖掘 高斯径向基核函数 多分类支持向量机 统计机器学习 惩罚参数C
Keywords:
handwritten English character recognitiondata miningradial basis function (RBF)MCSVMstatistical machine learningpenalty parameter C
分类号:
O212.5
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 01. 022
文献标志码:
A
摘要:
图像识别是"大数据"时代的热门研究领域之一,而英文字符识别是图像识别领域重要的研究方向.对于手写数据的辨认在移动智能、刑侦、医学、考古学等诸多领域有广泛的应用,同时,国内在该领域的建模探索相对匮乏.文中使用机器学习领域的经典手写字符数据集,基于统计机器学习理论,建立英文字符识别的支持向量机(SVM)模型.鉴于国内外对于参数选择至今没有公认的方法,依据支持向量的个数、训练误差、测试误差作为评价指标,对惩罚参数C的选取进行探索并给出了在字符识别领域的推荐值.实证结果表明,对"变体"英文字母的识别准确率很高,且非常稳健,没有"过拟合"现象,说明支持向量机适用于处理字符识别问题.本质上,相比经典的二分类问题,文中是多分类支持向量机(multi-class classification support vector machine,MCSVM)应用的研究与探索.
Abstract:
Pattern recognition is one of the hottest research fields in the era of “Big Data”,and English character recognition is considereda significant research orientation of pattern recognition. Recognizing handwritten data is widely used in many fields,such as mobile intel-ligence,criminal investigation,medicine,and archaeology. However,there is rare domestic modeling research in this field. Based on thestatistical machine learning theory,we make use of a classic handwritten data set in the field of machine learning to build a support vectormachine (SVM) model of English character recognition. It is well-known that there isn’t any widely accepted method to select parame-ters for SVM even in foreign articles. According to the fact,research on how to select penalty parameter C is implemented based on theindex like,the number of support vector,training error and test error. More than that,a recommended penalty parameter C of letter recog-nition is also proposed. The experiment indicates that this model has high accuracy and robustness without overfitting to recognize varia-tion English character. So SVM is a favorable choice to handle with character recognition. Essentially,this article aims at applied re-search and exploration of the multi-class classification support vector machine (MCSVM) compared with classical binary SVM.

相似文献/References:

[1]王刚.一种融合贝叶斯概率的社区结构发现方法研究[J].计算机技术与发展,2019,29(01):110.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 023]
 WANG Gang.Research on a Community Structure Detection Method Based onBayesian Probability[J].,2019,29(01):110.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 023]

更新日期/Last Update: 2019-01-10