[1]张其进,张玉梅.基于混沌特性的语音信号分类[J].计算机技术与发展,2019,29(01):66-69.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 014]
 ZHANG Qi-jin,ZHANG Yu-mei.Classification of Speech Signal Based on Chaotic Characteristics[J].,2019,29(01):66-69.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 014]
点击复制

基于混沌特性的语音信号分类()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年01期
页码:
66-69
栏目:
智能、算法、系统工程
出版日期:
2019-01-10

文章信息/Info

Title:
Classification of Speech Signal Based on Chaotic Characteristics
文章编号:
1673-629X(2019)01-0066-04
作者:
张其进 张玉梅
陕西师范大学 现代教学技术教育部重点实验室,陕西 西安 710119;陕西师范大学 计算机科学学院,陕西 西安 710119
Author(s):
ZHANG Qi-jin12ZHANG Yu-mei12
1. Ministry of Education Key Laboratory for Modern Teaching Technology,Shaanxi Normal University,Xi’an 710119,China;2. School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
关键词:
语音信号 相空间重构 特征提取 李雅普诺夫指数 分类
Keywords:
speech signalphase space reconstructionfeature extractionLyapunov indexclassification
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 01. 014
文献标志码:
A
摘要:
语音识别广泛应用于人机交互、安全识别等相关领域,语音信号分类是语音识别的重要基础.语音信号分类主要借助混沌特性的相关特征对语音信号进行研究.目前,语音信号分类相关研究主要有模型训练分类和特征提取两种方法.模型训练分类法需要大量数据的支撑,而且训练过程复杂、训练时间长.特征提取法需要提取大量不同特征进行分析,过程复杂.文中在特征提取法的基础上提出一种基于李雅普诺夫指数的语音信号混沌特性分类方法.该方法以混沌理论中相空间重构为基础,分别采用互信息法求取延迟时间、Cao方法求取嵌入维数、小数据量法求最大李雅普诺夫指数,然后探究各类语音信号的分布特点,并对其进行分类.
Abstract:
Speech recognition is widely applied in human-machine interaction,security recognition and other related fields. The classification of speech signal is an important basis for speech recognition and it is mainly based on the relevant characteristics of chaotic characteristics to study speech signal. At present,the related researches of speech signal classification mainly include model training classification and feature extraction. The former needs a lot of data with complex training process and long training time. The latter needs to extract a large number of different features for analysis,which is also complex in process. In this paper,based on the feature extractionmethod,we propose a chaotic speech signal classification method based on Lyapunov index. On the basis of phase space reconstruction inchaotic theory,we respectively calculate the delay time by mutual information method,the embedded dimension by Cao method and themaximum Lyapunov index by small-data volume method,then explore the distribution characteristics of various speech signals and classify them

相似文献/References:

[1]韩志艳,王健. 多模式情感识别特征参数融合算法研究[J].计算机技术与发展,2016,26(05):27.
 HAN Zhi-yan,WANG Jian. Research on Feature Fusion Algorithm for Multimodal Emotion Recognition[J].,2016,26(01):27.
[2]韩志艳,王健. 基于共振峰曲线的语音信号动态特征提取方法[J].计算机技术与发展,2017,27(06):72.
 HAN Zhi-yan,WANG Jian. Dynamic Feature Extraction for Speech Signal Based on Formant Curve[J].,2017,27(01):72.
[3]张永强,朱海鑫,周万珍,等.单通道频域语音分离技术研究进展[J].计算机技术与发展,2022,32(S2):8.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 002]
 ZHANG Yong-qiang,ZHU Hai-xin,ZHOU Wan-zhen,et al.Research Progress of Single Channel Frequency Domain Speech Separation Technology[J].,2022,32(01):8.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 002]

更新日期/Last Update: 2019-01-10