[1]汤其婕,王玙.基于I-GARCH的不确定时间序列概率分布推算[J].计算机技术与发展,2018,28(12):23-28.[doi:10.3969/j. issn.1673-629X.2018.12.005]
 TANG Qijie,WANG Yu.Probability Distribution Estimation of Uncertain Time Series Based on I-GARCH[J].,2018,28(12):23-28.[doi:10.3969/j. issn.1673-629X.2018.12.005]
点击复制

基于I-GARCH的不确定时间序列概率分布推算()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年12期
页码:
23-28
栏目:
智能、算法、系统工程
出版日期:
2018-12-10

文章信息/Info

Title:
Probability Distribution Estimation of Uncertain Time Series Based on I-GARCH
文章编号:
1673-629X(2018)12-0023-06
作者:
汤其婕;王玙;
南京航空航天大学计算机科学与技术学院;
Author(s):
TANG Qi-jieWANG Yu
School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
关键词:
不确定时间序列概率分布推算ARMA模型GARCH模型错误值过滤
Keywords:
uncertain time seriesprobability distribution estimationARMA modelGARCH modelerroneous value filtering
分类号:
TP311
DOI:
10.3969/j. issn.1673-629X.2018.12.005
摘要:
处理不确定数据存储问题的常用方法是使用概率数据库的方法,但是已有的概率数据库生成方法是针对已知概率分布的数据集。不确定时间序列在每一时刻的概率分布规律随着时间的变化而变化,无法使用统一的概率推导方法进行计算,因此已有的概率数据库生成方法不再适用。为解决该问题,依托已有的ARMA模型和GARCH模型,提出推导不确定时间序列概率分布的推算模型。同时,为了进一步增强该模型的容错性,提出了相应的错误值过滤算法。实验结果表明,该模型能够有效地根据不确定时间序列的发展规律,动态地进行调整计算,得出不确定时间序列的概率分布;同时,容错算法能够很好地探测找到数据集中的错误数据,进行数据的清洗与替换,体现出良好的容错性与一般通用性。
Abstract:
One of the most effective ways to deal with uncertain time series is to employ probabilistic database.But existing methods of generating probabilistic database are typically based on the assumption that the probabilistic distribution is already known.The law of probability distributions of uncertain time series varies with time and cannot be calculated by a uniform method,so the existing methods of generating probabilistic database are no longer applicable. To solve the problem,based on the existing ARMA model and GARCH model,we propose a prediction model for deriving the probability distribution of uncertain time series. In addition,in order to enhance the fault tolerance of the model,we propose a corresponding erroneous value filtering algorithm. Experiment shows that the model can effectively adjust and calculate the probability distribution of uncertain time series,which is in line with the development law of the origin uncertain time series. Furthermore,the erroneous value filtering algorithm can detect and find the erroneous values well,and then wash and replace the data with inferred correct values,which shows great fault tolerance and commonality.

相似文献/References:

[1]汤其婕,朱小萍.基于关键点的不确定时间序列线性降维方法[J].计算机技术与发展,2018,28(08):22.[doi:10.3969/ j. issn.1673-629X.2018.08.005]
 TANG Qi-jie,ZHU Xiao-ping.A Linear Dimensionality Reduction Method Based on Key Points for Uncertain Time Series[J].,2018,28(12):22.[doi:10.3969/ j. issn.1673-629X.2018.08.005]
[2]李成为,王 屿,郑迪威.基于 MR 框架的不确定时间序列相似性计算方法[J].计算机技术与发展,2018,28(10):27.[doi:10.3969/ j. issn.1673-629X.2018.10.006]
 LI Cheng-wei,WANG Yu,ZHENG Di-wei.A Similarity Computation Method of Uncertain Time Series Based on MR Framework[J].,2018,28(12):27.[doi:10.3969/ j. issn.1673-629X.2018.10.006]
[3]王 玙,左良利.关系数据库支持的不确定时间序列存储[J].计算机技术与发展,2019,29(11):7.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 002]
 WANG Yu,ZUO Liang-li.Research on Storage of Uncertain Time Series in Relational Databases[J].,2019,29(12):7.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 002]

更新日期/Last Update: 2018-12-10