[1]冯鸣夏,伍卫国,邸德海.基于负载感知和QoS的多中心作业调度算法[J].计算机技术与发展,2018,28(12):1-6.[doi:10.3969/j.issn.1673-629X.2018.12.001]
 FENG Mingxia,WU Weiguo,DI Dehai.A Job Scheduling Algorithm in Multi-computing Centers Based on Load-aware and QoS[J].,2018,28(12):1-6.[doi:10.3969/j.issn.1673-629X.2018.12.001]
点击复制

基于负载感知和QoS的多中心作业调度算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年12期
页码:
1-6
栏目:
智能、算法、系统工程
出版日期:
2018-12-10

文章信息/Info

Title:
A Job Scheduling Algorithm in Multi-computing Centers Based on Load-aware and QoS
文章编号:
1673-629X(2018)12-0001-06
作者:
冯鸣夏1伍卫国1邸德海2
1.西安交通大学 电子与信息工程学院,陕西 西安 710049; 2.西安交通大学 管理学院,陕西 西安 710049
Author(s):
FENG Ming-xia1WU Wei-guo1DI De-hai2
1.School of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China; 2.School of Management,Xi’an Jiaotong University,Xi’an 710049,China
关键词:
高性能计算负载感知QoS作业调度
Keywords:
high-performance computingload-awareQoSjob scheduling
分类号:
TP393
DOI:
10.3969/j.issn.1673-629X.2018.12.001
文献标志码:
A
摘要:
在国家高性能计算环境中,针对分布在不同地域的计算中心存在计算资源忙闲不均,缺少统一调度和管理的问题,提出了一种基于负载感知和 QoS 的多中心作业调度算法(Laq)。首先根据各个计算中心的负载情况将需要处理的作业分配给负载较轻的计算中心,然后充分考虑到用户的 QoS 需求,将作业尽量调度到符合用户 QoS 需求的计算中心,从而提高计算中心的服务水平。实验结果表明,与 Random 和 RoundRobin 算法相比,在 Laq 算法的作业调度策略下,多计算中心作业的完成时间、平均响应时间、平均等待时间和 slowdown 等性能指标都显著减少。各个计算中心保持了计算资源负载的相对均衡,提高了资源利用率。
Abstract:
In order to solve the problem of uniform scheduling and load imbalance in the national high-performance computing environment,we propose a job scheduling algorithm in multi-computing centers based on load-aware and QoS (Laq). First,the job that needs to be processed is assigned to the lighter computing center according to the load of each computing center. Then,the QoS requirements of users are fully taken into account,the job is dispatched to the computing center that conforms to the user’s QoS requirements to improve the service level of the computing center. The experiment shows that the performance indicators,such as the makespan,the average response time,the average waiting time are significantly reduced in comparison with the Random and the RoundRobin. Each computing center maintains the relative balance of computing resource load and improves resource utilization with Laq.

相似文献/References:

[1]王勇超 张璟 王新卫 马静.基于MPICH2的高性能计算集群系统研究[J].计算机技术与发展,2008,(09):101.
 WANG Yong-chao,ZHANG Jing,WANG Xin-wei,et al.Research of High Performance Cluster System Based on MPICH2[J].,2008,(12):101.
[2]赵颖辉[][],蒋从锋[][]. 遥感影像的高性能并行处理技术研究[J].计算机技术与发展,2014,24(07):201.
 ZHAO Ying-hui[][],JIANG Cong-feng[][]. Research on High Performance Parallel Processing Technology for Remote Sensing Images[J].,2014,24(12):201.
[3]魏敏[][],徐金秀[],王在志[]. 并行I/O技术在气候数值模式中的应用研究[J].计算机技术与发展,2014,24(12):11.
 WEI Min[][],XU Jin-xiu[] WANG Zai-zhi[]. Study and Application of Parallel I/O Technology in Numerical Climate Model[J].,2014,24(12):11.
[4]潘晓东,孙晓乐,郑文旭,等.并行程序性能和功耗的测试分析工具研究[J].计算机技术与发展,2021,31(07):69.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 012]
 PAN Xiao-dong,SUN Xiao-le,ZHENG Wen-xu,et al.A Survey of Performance and Power Measurement and Analysis Tools for Parallel Programs[J].,2021,31(12):69.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 012]

更新日期/Last Update: 2018-12-10