[1]陈耀东,彭蝶飞.一种面向旅游评论的情感特征识别方法[J].计算机技术与发展,2018,28(11):107-110.[doi:10.3969/ j. issn.1673-629X.2018.11.24]
 CHEN Yao-dong,PENG Die-fei.A Recognition Method of Sentiment Features for Tour Reviews[J].,2018,28(11):107-110.[doi:10.3969/ j. issn.1673-629X.2018.11.24]
点击复制

一种面向旅游评论的情感特征识别方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年11期
页码:
107-110
栏目:
智能、算法、系统工程
出版日期:
2018-11-10

文章信息/Info

Title:
A Recognition Method of Sentiment Features for Tour Reviews
文章编号:
1673-629X(2018)11-0107-04
作者:
陈耀东1彭蝶飞2
1. 长沙师范学院 信息与工程系,湖南 长沙 410100; 2. 长沙师范学院 科研与学科建设处,湖南 长沙 410100
Author(s):
CHEN Yao-dong1PENG Die-fei2
1. Department of Information and Engineering,Changsha Normal University,Changsha 410100,China; 2. Department of Research &Discipline Development,Changsha Normal University,Changsha 410100,China
关键词:
情感分析情感特征主题项语义角色标注语义指向游客评论
Keywords:
sentiment analysissentiment featuretopic termsemantic role labelingsemantic orientationtour reviews
分类号:
TP30
DOI:
10.3969/ j. issn.1673-629X.2018.11.24
文献标志码:
A
摘要:
情感分析的一大难点是如何获取主题相关的情感特征信息。 首先给出了“有效”情感特征的定义,然后提出了一种基于语义角色标注的有效情感特征抽取方法。 该方法先依据评论库的主题元数据得到候选主题特征项,并标注主题句,然后执行主题句的语义角色标注,基于情感特征所在的角色类型判断该特征语义是否指向主题项。 该方法的特点在于过滤与指定主题无关的噪声特征。 实验面向旅游景区游客评论在不同规模的标注集环境下对比了三种特征抽取方法,即基于词袋的方法、基于主题的方法和文中基于有效情感特征的方法,结果显示文中方法对于短文本的情感分类较词袋方法有 3%的性能提升,而对于长文本的情感分类其性能较前面两种方法优势突显,总体达到了 84.81%的准确率。
Abstract:
One of the challenges faced by sentiment analysis is how to obtain the information of sentiment characteristics related to the subject. We give the definition of effectiveness of sentiment features firstly. Then we propose an effective sentiment feature extraction method based on semantic role annotation. This method first gets candidate topic feature items based on the topic metadata of the comment library and annotates topic sentences. Then,semantic role annotation of topic sentences is performed,and the semantic of the feature is judged to be directed to the topic item based on the role type of the sentiment feature. This method is characterized by filtering noise features that are irrelevant to the specified subject. In experiment on scenic tourist comments in different sizes of tagging set environment,we compare the three methods of feature extraction respectively based on word bag,based on topic and based on effective features in this paper. It shows that the proposed method has 3% performance improvements for short text classification of sentiment than the word bag method,and for a long text sentiment classification,its performance is remarkably highlighted with 84.81% of overall accuracy.

相似文献/References:

[1]石瑛 胡学钢 方磊.基于决策树的多特征语音情感识别[J].计算机技术与发展,2009,(01):147.
 SHI Ying,HU Xue-gang,FANG Lei.Research of Speech Emotion Recognition Based on Decision Tree and Acoustic Features[J].,2009,(11):147.
[2]李妍坊,许歆艺,刘功申. 面向情感倾向性识别的特征分析研究[J].计算机技术与发展,2014,24(09):33.
 LI Yan-fang,XU Xin-yi,LIU Gong-shen. Research on Feature Analysis Oriented Text Sentiment Identification[J].,2014,24(11):33.
[3]苏小英[][],孟环建[]. 基于神经网络的微博情感分析[J].计算机技术与发展,2015,25(12):161.
 SU Xiao-ying[][],MENG Huan-jian[]. Sentiment Analysis of Micro-blog Based on Neural Networks[J].,2015,25(11):161.
[4]吴潇[],王磊[][]. 基于购物领域词典扩建的评论情感研究[J].计算机技术与发展,2017,27(07):194.
 WU Xiao[],WANG Lei[][]. Investigation on Sentiment of Reviews with Shopping Field Dictionary Construction[J].,2017,27(11):194.
[5]杨立月,王移芝.微博情感分析的情感词典构造及分析方法研究[J].计算机技术与发展,2019,29(02):13.[doi:10.3969/j.issn.1673-629X.2019.02.003]
 YANG Liyue,WANG Yizhi.Research on Construction and Analysis of Emotion Dictionary in Emotion Analysis of Micro-blog[J].,2019,29(11):13.[doi:10.3969/j.issn.1673-629X.2019.02.003]
[6]唐 莉,刘 臣.基于 CRF 和 HITS 算法的特征情感对提取[J].计算机技术与发展,2019,29(07):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
 TANG Li,LIU Chen.Extraction of Feature and Sentiment Word Pair Based on Conditional Random Fields and HITS Algorithm[J].,2019,29(11):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 014]
[7]申静波,李井辉,孙丽娜.注意力机制在评论文本情感分析中的应用研究[J].计算机技术与发展,2020,30(07):169.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
 SHEN Jing-bo,LI Jing-hui,SUN Li-na.Research on Application of Attention Mechanism in Comment Text Emotional Analysis[J].,2020,30(11):169.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
[8]王连喜.基于“属性-情感词”汽车本体的文本情感分析[J].计算机技术与发展,2020,30(08):193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 034]
 WANG Lian-xi.Sentiment Analysis Method Based on Attribute-sentiment Ontology in Automobile Domain[J].,2020,30(11):193.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 034]
[9]邱全磊,崔宗敏,喻 静.基于表情和语气的情感词典用于弹幕情感分析[J].计算机技术与发展,2020,30(08):178.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 031]
 QIU Quan-lei,CUI Zong-min,YU Jing.Emotional Dictionary Based on Emoticons and Modal for Barrage Sentiment Analysis[J].,2020,30(11):178.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 031]
[10]黄剑波,陈方灵,丁友东,等.基于情感分析的个性化电影推荐[J].计算机技术与发展,2020,30(09):132.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 024]
 HUANG Jian-bo,CHEN Fang-ling,DING You-dong,et al.Personalized Movie Recommendation Based on Sentiment Analysis[J].,2020,30(11):132.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 024]

更新日期/Last Update: 2018-11-10