[1]王冰玉,吴振宇,沈苏彬.一种社交网络的增量社区检测算法及实现优化[J].计算机技术与发展,2018,28(10):64-69.[doi:10.3969/ j. issn.1673-629X.2018.10.013]
 WANG Bing-yu,WU Zhen-yu,SHEN Su-bin.An Incremental Community Detection Algorithm for Social Networks and Its Optimization[J].,2018,28(10):64-69.[doi:10.3969/ j. issn.1673-629X.2018.10.013]
点击复制

一种社交网络的增量社区检测算法及实现优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年10期
页码:
64-69
栏目:
智能、算法、系统工程
出版日期:
2018-10-10

文章信息/Info

Title:
An Incremental Community Detection Algorithm for Social Networks and Its Optimization
文章编号:
1673-629X(2018)10-0064-06
作者:
王冰玉1吴振宇1沈苏彬2
1. 南京邮电大学 物联网学院,江苏 南京 210000; 2. 南京邮电大学 计算机学院,江苏 南京 210000
Author(s):
WANG Bing-yu1WU Zhen-yu1SHEN Su-bin2
1. School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210000,China; 2. School of Computer Science &Technology,Nanjing University of Posts and Telecommunications,Nanjing 210000,China
关键词:
社交网络社区检测增量更新
Keywords:
K Cliquesocial networkcommunity detectionincremental updating
分类号:
TP391
DOI:
10.3969/ j. issn.1673-629X.2018.10.013
文献标志码:
A
摘要:
社区检测是社交网络中常用的分析手段,目的是发现网络中联系较为紧密的节点集群,提取集群,从而进一步探索集群隐含的信息。 现实中的社交网络随时间不断增大,传统的社区检测算法在不断增大的网络中运行会十分耗时,这是传统社区检测算法的一个极大弊端。 针对该问题,基于传统的 K-Clique 社区检测算法,提出一种增量 K-Clique 社区检测算法。 与传统 K-Clique 相比,增量 K-Clique 使用网络中新增的边和节点去更新已有的社区检测结果,而非在时间片更新时对整个网络重新进行社区检测,算法忽略极少部分的细节换取整体的高效性。 实验结果表明,增量社区检测算法较传统算法在执行效率上提高显著,且检测结果与传统 K-Clique 几乎吻合。
Abstract:
Community detection is a common tool to analyze social networks,aiming to discover the clusters of elements that are more closely connected in the network and then extract the clusters so as to further explore the hidden information of the cluster. As social network in real life is growing over time,using traditional community detection methods would be very time-consuming. This is a great disadvantage of the traditional community detection algorithm. In view of this,we propose an incremental K-Clique community detection algorithm based on the traditional K-Clique,which uses the edges and nodes in the new time slice to update the existing community instead of re-conducting community detection on the entire network at time slice updates. The algorithm ignores a small part of details in exchange for the overall efficiency. The experiment shows that the incremental community detection algorithm improves the execution efficiency significantly compared with the traditional one,and the detection results are almost consistent with the traditional K-clique.

相似文献/References:

[1]李桃陶,周斌,王忠振. 基于社交网络的图数据挖掘应用研究[J].计算机技术与发展,2014,24(10):6.
 LI Tao-tao,ZHOU Bin,WANG Zhong-zhen. Research on Graph Data Mining Application Based on Social Network[J].,2014,24(10):6.
[2]张付霞,蒋朝惠. 基于DSNPP算法的社交网络隐私保护方法[J].计算机技术与发展,2015,25(08):152.
 ZHANG Fu-xia,JIANG Chao-hui. Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm[J].,2015,25(10):152.
[3]陈思憬,骆冰清,孙知信.基于混合好友路径信任度的社交好友推荐算法[J].计算机技术与发展,2018,28(02):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
 CHEN Si-jing,LUO Bing-qing,SUN Zhixin.Social Friend Recommendation Algorithm Based on Trust of Paths between Mixed Friends[J].,2018,28(10):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
[4]李梦洁,邵曦.基于文本属性的微博用户相似度研究[J].计算机技术与发展,2018,28(05):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
 LI Meng-jie,SHAO Xi. Research on Micro-blog User Similarity Based on Text Similarity[J].,2018,28(10):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
[5]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(10):31.
[6]余莎莎[],王友国[],朱亮[]. 基于SIR社交网络中商业谣言传播研究[J].计算机技术与发展,2016,26(11):195.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Research on Online Business Rumors Transmission Based on an Improved SIR Model[J].,2016,26(10):195.
[7]余莎莎[],王友国[],朱亮[]. 基于网络博弈论的谣言扩散建模研究[J].计算机技术与发展,2017,27(04):6.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Investigation on Rumor Diffusion Modeling with Network Game Theory[J].,2017,27(10):6.
[8]付明明,余莎莎,应志领. 在线社交网络的双谣言模型研究[J].计算机技术与发展,2017,27(09):53.
 FU Ming-ming,YU Sha-sha,YING Zhi-ling. Research on Double Rumor Model in Online Social Network[J].,2017,27(10):53.
[9]李旗旗,徐敏. 社交网络中的链路预测方法改进[J].计算机技术与发展,2017,27(11):37.
 LI Qi-qi,XU Min. Improvement of Link Prediction Method in Social Networks[J].,2017,27(10):37.
[10]初晓宇,高守玮.基于优先连接和用户属性的链路预测算法研究[J].计算机技术与发展,2019,29(11):17.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 004]
 CHU Xiao-yu,GAO Shou-wei.Research on Link Prediction Algorithm Based on Professional Attachment and User Attributes[J].,2019,29(10):17.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 004]

更新日期/Last Update: 2018-10-10