[1]龚安,费凡.基于多特征融合的评论文本情感分析[J].计算机技术与发展,2018,28(08):91-95.[doi:10.3969/ j. issn.1673-629X.2018.08.019]
 GONG An,FEI Fan.Comment Text Sentiment Analysis Based on Multi-feature Fusion[J].,2018,28(08):91-95.[doi:10.3969/ j. issn.1673-629X.2018.08.019]
点击复制

基于多特征融合的评论文本情感分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年08期
页码:
91-95
栏目:
智能、算法、系统工程
出版日期:
2018-08-10

文章信息/Info

Title:
Comment Text Sentiment Analysis Based on Multi-feature Fusion
文章编号:
1673-629X(2018)08-0091-05
作者:
龚安费凡
中国石油大学(华东) 计算机与通信工程学院,山东 青岛 266580
Author(s):
GONG AnFEI Fan
School of Computer &Communication Engineering,China University of Petroleum,Qingdao 266580,China
关键词:
文本情感分析多特征融合机器学习情感规则
Keywords:
text sentiment analysismulti-feature fusionmachine learningemotional rules
分类号:
TP391.9
DOI:
10.3969/ j. issn.1673-629X.2018.08.019
文献标志码:
A
摘要:
评论文本情感分析现已成为自然语言处理的重要研究领域。 针对评论文本语法不规则、特征稀疏的问题,设计了一种针对评论文本的多特征融合的情感分类算法。 首先提出一种改进的情感规则方法;然后从规则方法中提取出有效信息,将每一个情感信息量扩展为多维向量,再融合一元词特征、句法特征以及依存词语搭配特征构成向量空间,形成更有效的融合特征模板;最后利用信息增益理论进行特征选择,作为支持向量机的输入对评论文本进行识别和分类,实现了机器学习方法与规则方法相融合。 以中文酒店评论数据集作为语料进行实验,结果表明该方法能让机器学习算法更加充分地利用规则特征,相比单纯地使用规则方法或机器学习方法,能够达到更好的分类性能,进一步提高分类精度。
Abstract:
The analysis on text emotional inclination has received much attention from natural language processing filed in recent years. In order to solve the problem of grammatical irregularity and feature sparsity,we design an emotional classification approach based on multi -feature fusion for text sentiment. At first,an improved method based on emotional rules is proposed. Then the effective information ex- tracted from the ruled-based method is extended to a multidimensional vector and an effective integration feature set is obtained by adding various rule-based features to the basic feature set after expanding and converting them. Finally,the information gain theory is used to se- lect features as the input of SVM. Thus,a method via a combination of rule-based and machine learning method is realized. We use the Chinese hotel reviews data set as the corpus for the experiment which shows that this method can make machine learning algorithm more full use of the rule features and it works better than simply using rule-based method or machine learning method.

相似文献/References:

[1]汪正中 张洪渊.基于英文博客文本的情感分析研究[J].计算机技术与发展,2011,(08):153.
 WANG Zheng-zhong,ZHANG Hong-yuan.Research of Sentiment Analysis on English Blog Text[J].,2011,(08):153.
[2]聂建豪,李士进. 基于图像识别的秸秆焚烧事件检测[J].计算机技术与发展,2017,27(05):69.
 NIE Jian-hao,LI Shi-jin. Detection of Straw Burning Event Based on Image Recognition[J].,2017,27(08):69.
[3]郭蕾蕾,俞 璐,段国仑,等.基于 AP 聚类的多特征融合方法[J].计算机技术与发展,2019,29(08):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 009]
 GUO Lei-lei,YU Lu,DUAN Guo-lun,et al.A Multi-feature Fusion Method Based on AP Clustering[J].,2019,29(08):47.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 009]
[4]于海河,杨 硕,李大舟.基于 Gabor 滤波多特征融合的车牌定位算法[J].计算机技术与发展,2020,30(09):194.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 035]
 YU Hai-he,YANG Shuo,LI Da-zhou.A Vehicle License Plate Localization Algorithm Based on Gabor Filtering and Multi-feature Fusion[J].,2020,30(08):194.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 035]
[5]罗正军,柯铭菘,周德群.基于改进型 LSTM 的文本情感分析模型研究[J].计算机技术与发展,2020,30(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 007]
 LUO Zheng-jun,KE Ming-song,ZHOU De-qun.Research on Text Sentiment Analysis Model Based on Improved LSTM[J].,2020,30(08):40.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 007]
[6]梁元辉,吴清乐,曹立佳.基于多特征融合的眼睛状态检测算法研究[J].计算机技术与发展,2021,31(02):97.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 018]
 LIANG Yuan-hui,WU Qing-le,CAO Li-jia.Research on Eye State Detection Algorithm Based on Multi-feature Fusion[J].,2021,31(08):97.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 018]
[7]王 君,蒲 磊,黄 宁,等.基于无人机视觉的森林火情预测[J].计算机技术与发展,2021,31(06):204.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 036]
 WANG Jun,PU Lei,HUANG Ning,et al.Prediction of Forest Fire Based on Machine Vision ofUnmanned Aerial Vehicle[J].,2021,31(08):204.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 036]
[8]张汝佳,杨小军,王 海.多特征融合相关粒子滤波器视频目标跟踪算法[J].计算机技术与发展,2021,31(06):29.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 006]
 ZHANG Ru-jia,YANG Xiao-jun,WANG Hai.Multiple Features Fusion Targets Tracking Method Based onCorrelation Particle Filter[J].,2021,31(08):29.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 006]
[9]赵 振,朱振方 *,王文玲.基于关系特征交互的方面级情感分类方法[J].计算机技术与发展,2023,33(03):187.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 028]
 ZHAO Zhen,ZHU Zhen-fang *,WANG Wen-ling.An Aspect-level Sentiment Classification Method Based on Relational Feature Interaction[J].,2023,33(08):187.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 028]

更新日期/Last Update: 2018-09-10