[1]周苾,卢山,汤鲲.基于CEP 的校园推荐系统设计与实现[J].计算机技术与发展,2018,28(06):192-196.[doi:10.3969/ j. issn.1673-629X.2018.06.043]
 ZHOU Bi,LU Shan,TANG Kun.Design and Implementation of Campus Recommendation System Based on CEP[J].,2018,28(06):192-196.[doi:10.3969/ j. issn.1673-629X.2018.06.043]
点击复制

基于CEP 的校园推荐系统设计与实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年06期
页码:
192-196
栏目:
应用开发研究
出版日期:
2018-06-10

文章信息/Info

Title:
Design and Implementation of Campus Recommendation System Based on CEP
文章编号:
1673-629X(2018)06-0192-05
作者:
周苾1   2 卢山3 汤鲲2
1. 武汉邮电科学研究院,湖北 武汉 430000;
2. 南京烽火软件科技有限公司,江苏 南京 210000;
3. 东南大学 计算机教学实验中心,江苏 南京 210000
Author(s):
 ZHOU Bi1   2 LU Shan3 TANG Kun2
1. Wuhan Research Institute,Wuhan 430000,China;
2. Nanjing Signal Fire Software Technology Co. ,Ltd,Nanjing 210000,China;
3. Experimental Teaching Center of Computer,Southeast University,Nanjing 210000,China
关键词:
复杂事件处理个性化推荐资源过载协同过滤Esper
Keywords:
complex event processingpersonalizaed recommendationresourse overloadcollaborative filteringEsper
分类号:
TP302
DOI:
10.3969/ j. issn.1673-629X.2018.06.043
文献标志码:
A
摘要:
针对高校学生课外资源过载、缺少实时个性化推荐等问题,将复杂事件处理技术(CEP)运用到推荐系统中,发挥其强大的实时处理优势,对进一步提高高校个性化资源推荐系统的准确性和实时性进行了研究。 将高校管理与资源推荐相结合,设计大数据背景下的校园学辅资源推荐系统。 利用复杂事件处理技术,将学生实时地理位置信息、签到信息、图书馆借阅信息、宿舍信息等四种多维、异构数据源相结合,使用 EPL 语言实现相应的规则关联,将简单事件流通过 Esper 引擎处理后形成复杂事件流,对高校学生资源推荐系统作实证分析,实现从学生基本信息数据流处理、复杂事件规则验证到相关资源推荐的整个推送过程。 实验结果表明,将该系统与最常用的基于协同过滤算法的推荐系统性能作比较,实时性提升了 20%,准确度提升了 30%,验证了该系统具有良好的推荐效果。
Abstract:
To solve the problems of the overload of extracurricular resources and lack of real-time personalized recommendation for college students,the complex event processing (CEP) is applied to recommender systems owing to its powerful real-time processing advantages for research on further improvement of the accuracy and real-time of personalized resource recommendation system in colleges.Combining university management with recommending resource,we design the campus resource recommendation system under the background of big data. Using complex event processing techniques to combine four different kinds of multidimensional,isomerism data source,real time location,check-ins,library lending and dormitory information,we use the EPL to change simple events to complex events through the Esper engine,which can implement the whole process from student basic information data flow processing,complex event rule verification to related resource recommendation. Compared with collaborative filtering algorithm based on cosine,the results show that the real-time is increased by 20%,and the accuracy is increased by 30%. It is proved that the recommendation system performs well.

相似文献/References:

[1]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(06):69.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(06):182.
[3]汤亚玲 秦峰.Web行为下的正向关联规则挖掘研究[J].计算机技术与发展,2007,(08):40.
 TANG Ya-ling,QIN Feng.Research of Forward Association Rules Mining Under Web Behaviour[J].,2007,(06):40.
[4]卫琳.基于搜索结果的个性化推荐系统研究[J].计算机技术与发展,2007,(09):65.
 WEI Lin.A Study of Personalization Recommendation System Based on Search Result[J].,2007,(06):65.
[5]但微 才书训.电子商务中Web挖掘技术的应用探讨[J].计算机技术与发展,2006,(01):207.
 DAN Wei,CAI Shu-xun.Using Web Mining in Electronic Commerce[J].,2006,(06):207.
[6]王嫣然 陈梅 王翰虎 张鑫.一种基于内容过滤的科技文献推荐算法[J].计算机技术与发展,2011,(02):66.
 WANG Yan-ran,CHEN Mei,WANG Han-hu,et al.A Content-Based Filtering Algorithm for Scientific Literature Recommendation[J].,2011,(06):66.
[7]王庆生 魏晓伟.RFID复杂事件处理关键技术的研究与改进[J].计算机技术与发展,2012,(01):45.
 WANG Qing-sheng,WEI Xiao-wei.Research and Improvement on Key Technology of RFID Complex Event Processing[J].,2012,(06):45.
[8]杨晶,成卫青,郭常忠.基于标准标签的用户兴趣模型研究[J].计算机技术与发展,2013,(10):208.
 YANG Jing[],CHENG Wei-qing[],GUO Chang-zhong[].Research on User Interest Model Based on Standard Tag[J].,2013,(06):208.
[9]殷凤霞.社会网络中基于内容语义的新闻推荐方法研究[J].计算机技术与发展,2013,(10):253.
 YIN Feng-xia.Research on Method of News Recommendation Based on Content Semantic in Social Network[J].,2013,(06):253.
[10]黄谭,苏一丹.基于混合用户模型的二分图推荐算法[J].计算机技术与发展,2014,24(06):145.
 HUANG Tan,SU Yi-dan.Bipartite Graph Recommendation Algorithm Based on Hybrid User Model[J].,2014,24(06):145.

更新日期/Last Update: 2018-08-22