[1]楚超勤,肖秦琨,高嵩.基于深度学习和动态时间规整的人体运动检索[J].计算机技术与发展,2018,28(06):59-63.[doi:10.3969/ j. issn.1673-629X.2018.06.013]
 CHU Chao-qin,XIAO Qin-kun,GAO Song.Human Motion Retrieval Based on Deep Learning and Dynamic Time Warping[J].,2018,28(06):59-63.[doi:10.3969/ j. issn.1673-629X.2018.06.013]
点击复制

基于深度学习和动态时间规整的人体运动检索()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年06期
页码:
59-63
栏目:
智能、算法、系统工程
出版日期:
2018-06-10

文章信息/Info

Title:
Human Motion Retrieval Based on Deep Learning and Dynamic Time Warping
文章编号:
1673-629X(2018)06-0059-05
作者:
楚超勤肖秦琨高嵩
西安工业大学 电子信息工程学院,陕西 西安 710032
Author(s):
CHU Chao-qinXIAO Qin-kunGAO Song
School of Electronic Information Engineering,Xi’an University of Technology,Xi’an 710032,China
关键词:
运动检索模糊聚类自动编码器曼哈顿距离动态规划
Keywords:
motion retrievalfuzzy clusteringautomatic encoderManhattan distancedynamic programming
分类号:
TP301
DOI:
10.3969/ j. issn.1673-629X.2018.06.013
文献标志码:
A
摘要:
随着计算机动画在各种应用中的日益普及,市场上出现了很多人体运动捕获设备,人们使用这些设备制作了大量的人体运动数据库。 为了节约成本和高效地利用已有数据资源,提出了一种基于深度学习和动态时间规整相结合的人体运动检索方法。 该方法包括两个主要阶段,在学习阶段,针对运动数据库中的运动序列,首先利用模糊聚类获取运动代表性帧,进而建立关键帧图像集合,然后应用深度神经网络学习关键帧图像集合,得到自动编码器,再应用自动编码器提取各个关键帧运动姿态的特征,建立运动特征数据库。 在运动检索阶段,针对待查询运动序列,根据阶段 1 获取的自动编码器对每一关键帧图片提取特征,进而使用基于曼哈顿距离的动态规划方法计算待查询运动与数据库中运动的相似度,并根据相似度量值对检索结果进行排序。 最后通过实验验证了该方法的有效性。
Abstract:
With the popularity of computer animation in various applications,human motion capture equipment is produced on the market,which can be used to produce lots of human motion databases. To reduce cost and utilize the existing data resources better,we propose a method of human motion retrieval based on depth learning and dynamic time warping. It consists of two main phases. In the learning,first of all,we obtain motion representative frame by the fuzzy clustering in view of the sequence in the motion database and set up a collection of key frame images. Then we use the deep neural network to learn the collection of key frame images for the automatic encoder and following the automatic encoder to extract the feature of each key motion frame for establishment of the motion feature database. In the motion retrieval,the automatic encoder attained by former phase extracts the feature of each key frame motion image. We use the dynamic programming method based on Manhattan distance to calculate the similarity between the motion sequences queried and the motions in the database,and sort the search results according to similarity measures. Finally the experiment proves the effectiveness of the proposed method.

相似文献/References:

[1]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(06):128.
[2]冯春辉.Web日志挖掘在网络教学中的应用研究[J].计算机技术与发展,2010,(06):183.
 FENG Chun-hui.Research on Application of Web Log Mining in Network Teaching[J].,2010,(06):183.
[3]李光耀 聂诗良.基于小波分解和模糊聚类的图像分割方法[J].计算机技术与发展,2009,(06):121.
 LI Guang-yao,NIE Shi-liang.Image Segment Algorithm Based on Wavelet Decomposition and Fuzzy Clustering Theory[J].,2009,(06):121.
[4]曹文婷 邹海 段凤玲.基于模糊K—Modes和免疫遗传算法的聚类分析[J].计算机技术与发展,2009,(02):151.
 CAO Wen-ting,ZOU Hai,DUAN Feng-ling.Cluster Analysis Based on Fuzzy K- Modes and Immune Genetic Algorithm[J].,2009,(06):151.
[5]于水英 丁华福 付志超.基于遗传算法和模糊聚类的文本分类研究[J].计算机技术与发展,2009,(04):131.
 YU Shui-ying,DING Hua-fu,FU Zhi-chao.Study on Text Categorization Based on Genetic Algorithm and Fuzzy Clustering[J].,2009,(06):131.
[6]罗军生 李永忠 杜晓.基于模糊C-均值聚类算法的入侵检测[J].计算机技术与发展,2008,(01):178.
 LUO Jun-sheng,LI Yong-zhong,DU Xiao.Intrusion Detection Based on Fuzzy C- Means Clustering Algorithm[J].,2008,(06):178.
[7]王伟 高亮 吴涛.一种基于模糊聚类的离散化方法[J].计算机技术与发展,2008,(03):53.
 WANG Wei,GAO Liang,WU Tao.Discretization of Continuous Attributes Based on Fuzzy Cluster[J].,2008,(06):53.
[8]王艳华 管一弘.基于模糊集理论的医学图像分割的应用[J].计算机技术与发展,2008,(11):223.
 WANG Yan-hua,GUAN Yi-hong.Application of Medical Image Segmentation Technology Based on Fuzzy - Set - Theory[J].,2008,(06):223.
[9]阳辉 金可音 汤双权 徐利谋.基于语义Web Services的模糊匹配[J].计算机技术与发展,2007,(11):125.
 YANG Hui,JIN Ke-yin,TANG Shuang-quan,et al.Fuzzy Matching Based on Semantic Web Services[J].,2007,(06):125.
[10]李晓昕 谢维奇.基于Web日志挖掘的网上学习行为研究[J].计算机技术与发展,2011,(12):73.
 LI Xiao-xin,XIE Wei-qi.Research on E-Learning Behavior Based on Weblog Mining[J].,2011,(06):73.

更新日期/Last Update: 2018-08-16