[1]王金,张朝恒.群组推荐系统研究与分析[J].计算机技术与发展,2018,28(05):158-163.[doi:10.3969/j.issn.1673-629X.2018.05.036]
 WANG Jin,ZHANG Chaoheng.Research and Analysis of Group Recommendation System[J].,2018,28(05):158-163.[doi:10.3969/j.issn.1673-629X.2018.05.036]
点击复制

群组推荐系统研究与分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
158-163
栏目:
应用开发研究
出版日期:
2018-05-10

文章信息/Info

Title:
Research and Analysis of Group Recommendation System
文章编号:
1673-629X(2018)05-0158-06
作者:
王金张朝恒
浙江师范大学 数理与信息工程学院,浙江 金华 321000
Author(s):
WANG JinZHANG Chao-heng
School of Mathematics and Information Engineering,Zhejiang Normal University,Jinhua 321000,China
关键词:
群组推荐推荐系统聚合策略评价指标数据来源
Keywords:
group recommendationrecommender systemsaggregation strategyevaluation indexdata sources
分类号:
TP302
DOI:
10.3969/j.issn.1673-629X.2018.05.036
文献标志码:
A
摘要:
随着大数据时代的到来,推荐系统的应用越来越广,推荐服务对象逐渐由单个用户扩展为群组用户,这不仅给推荐系统带来了技术上的挑战,而且也促进了群组推荐的产生。群组推荐系统是在个性化推荐基础上发展而来,它的主要任务是为群体用户推荐他们都可能感兴趣的信息或项目。由于群组推荐的特殊性和应用广泛性,近年来逐渐成为推荐系统领域研究热点,但国内对于群组推荐的研究相对较少,相关的理论以及推荐技术都还不够成熟,而所形成的中文类参考文献更是数量可数。因此,文中对群组推荐系统的相关理论、算法及应用展开研究与分析。首先介绍了群组推荐的概念、类型,其次描述并展示了群组推荐生成过程及方法,然后对群组推荐实验数据来源、评价指标和算法及应用进行了研究与分析,最后尝试对群组推荐未来面临的挑战进行探讨。
Abstract:
With the advent of the big data era,the application of the recommended system is also becoming more and more widely in many fields,and the recommended service object is gradually extended from a single user to a group user,which not only brings technical challenges to the recommendation system,but also promotes the birth of group recommendations.Group recommendation system is developed on the basis of personalized recommendation and its main task is to recommend information or project which might be interested by group users.Because of the specificity and wide application of the group recommendation,in recent years,it has become a hot topic in the field of recommendation system.However,there are less research on group recommendation in China,the relevant theories and recommendation technology are not mature enough and the number of Chinese papers or other material that can be referenced is countable.Therefore,we study and analyze the theory,algorithm and application of group recommendation system.Firstly,we introduce the concept and types of group recommendation.Secondly,we describe in words and show with pictures the process of group recommended generation.Thirdly,the experimental data source and the evaluation index of group recommendation are summarized and the algorithm and application are studied and analyzed.Finally,we try to discuss the challenges that the group recommendation will be faced with in the future.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(05):67.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(05):182.
[3]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(05):4.
[4]高静 应吉康.基于人工免疫系统的推荐系统[J].计算机技术与发展,2007,(05):180.
 GAO Jing,YING Ji-kang.A Recommendation System Based on Artificial Immune System[J].,2007,(05):180.
[5]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(05):70.
[6]华铨平.基于FNN的家纺产品个性化推荐系统的研究[J].计算机技术与发展,2011,(09):183.
 HUA Quan-ping.Research on Personalized Recommendation System of Textile Products Used by Family Based on FNN[J].,2011,(05):183.
[7]马言春 彭志平.基于市场机制的云服务管理研究[J].计算机技术与发展,2012,(03):214.
 MA Yan-chun,PENG Zhi-ping.Research on Cloud Service Management Based on Market Mechanism[J].,2012,(05):214.
[8]刘厚良.网络协同戏剧中个性化戏剧资源推荐系统[J].计算机技术与发展,2012,(08):25.
 LIU Hou-liang.Personalized Drama Resource Recommendation System in Cooperative Play[J].,2012,(05):25.
[9]陆晓敏 崇志宏 陈国庆.基于本体的商品推荐方法[J].计算机技术与发展,2012,(10):10.
 LU Xiao-min,CHONG Zhi-hong,CHEN Guo-qing.Product Recommending Method Based on Ontology[J].,2012,(05):10.
[10]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(05):66.

更新日期/Last Update: 2018-07-06