[1]贾志娟,赵靓,周娜.基于社交网络分析的诈骗团体挖掘方法研究[J].计算机技术与发展,2018,28(05):90-93.[doi:10.3969/j.issn.1673-629X.2018.05.021]
 JIA Zhi-juan,ZHAO Liang,ZHOU Na.Research on Mining Fraud Group Based on Social Network Analysis[J].,2018,28(05):90-93.[doi:10.3969/j.issn.1673-629X.2018.05.021]
点击复制

基于社交网络分析的诈骗团体挖掘方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
90-93
栏目:
智能、算法、系统工程
出版日期:
2018-05-10

文章信息/Info

Title:
Research on Mining Fraud Group Based on Social Network Analysis
文章编号:
1673-629X(2018)05-0090-04
作者:
贾志娟赵靓周娜
郑州师范学院 信息科学与技术学院,河南 郑州 450044
Author(s):
JIA Zhi-juanZHAO LiangZHOU Na
School of Information Science & Technology,Zhengzhou Normal University,Zhengzhou 450044,China
关键词:
社会网络分析数据挖掘诈骗团体特征向量
Keywords:
social network analysisdata miningfraud groupfeature vectors
分类号:
TP301
DOI:
10.3969/j.issn.1673-629X.2018.05.021
文献标志码:
A
摘要:
微博作为一种重要的社交方式,逐渐融入大众生活,用户在平台上可以随时随地抒发个人情感、分享信息等。微博在给人们带来信息传递之便利的同时,也带来了不少不法分子利用其进行诈骗的问题。诈骗团体利用微博设置语言陷阱,以此骗取他人钱财、夺取他人利益。对此,利用社群图表示微博社会网络,该网络是一有向图,节点表示微博用户,连接线表示微博传播路径,以此连接微博发起节点和微博转发节点。另外,研究社会网络分析的方法和数据挖掘的技术,对诈骗团体进行分析,对该团体应具有的组织结构、特性进行定义,分析出微博中诈骗团体应该具备的特征,并以此寻找微博中潜在的诈骗团体,帮助用户识别诈骗,避免上当受骗。最后用案例验证了该方法的有效性。
Abstract:
As an important social way,Weibo has been integrated into public life.Users can express personal feelings and share information anytime and anywhere on the platform.In addition to the convenience of message transmission,Weibo also brings a lot of criminals to use it for fraud.The fraud groups use Weibo to set the language trap for money and interests of others.For this,we use the social diagram to express Weibo social network which is a directed graph.Nodes represent Weibo users,and the connection lines represent Weibo propagation path,to connect Weibo initiated node and Weibo forwarding node.Besides,we use the method of social network analysis and data mining technology to analyze the fraud group,thus defining its organizational structure and characteristics,finding out the potential fraud group in Weibo,which helps users identify the fraud and avoids being deceived.Finally,the validity of the method is verified according to a case.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(05):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(05):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(05):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(05):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(05):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(05):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(05):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(05):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(05):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(05):113.

更新日期/Last Update: 2018-06-28