[1]裴炜冬,朱铮涛,杨敏,等.基于改进的 Gabor 指纹纹理提取算法的研究[J].计算机技术与发展,2018,28(04):124-127.[doi:10.3969/ j. issn.1673-629X.2018.04.026]
 PEI Wei-dong,ZHU Zheng-tao,YANG Min,et al.Research on Texture Extraction Algorithm Based on Improved Gabor Fingerprint[J].,2018,28(04):124-127.[doi:10.3969/ j. issn.1673-629X.2018.04.026]
点击复制

基于改进的 Gabor 指纹纹理提取算法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年04期
页码:
124-127
栏目:
智能、算法、系统工程
出版日期:
2018-04-10

文章信息/Info

Title:
Research on Texture Extraction Algorithm Based on Improved Gabor Fingerprint
文章编号:
1673-629X(2018)04-0124-04
作者:
裴炜冬1 朱铮涛1 杨敏2 萧达安1
1. 广东工业大学 机电工程学院,广东 广州 510006;
2. 广东警官学院 刑事技术系,广东 广州 510440
Author(s):
PEI Wei-dong1 ZHU Zheng-tao1 YANG Min2 XIAO Da-an1
1. School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China;
2. Department of Criminal Technology,Guangdong Police College,Guangzhou 510440,China
关键词:
局部二值模式分形维数Gabor 滤波器纹理提取Tamura
Keywords:
local binary pattern(LBP)fractal dimensionGabor filtertexture extractionTamura
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.04.026
文献标志码:
A
摘要:
针对指纹纹理中的细节点特征和图像特征的提取,对常用的纹理提取方法如 LBP 纹理统计特征、基于分形维数的纹理特征提取、Gabor 滤波器的纹理提取、Tamura 纹理分析法等进行了一定研究。 利用 Gabor 滤波器在频域和时域可以同时取得最优局部化的特性,可以很好地描述对应于空间频率(尺度)、空间位置及方向选择性的局部结构信息,因此提出在传统 Gabor 函数模型基础上引入了两种不同的曲率因子,并利用 Gabor 滤波器可以分解成两个正交方向的一维高斯滤波器的特性,解决了一般性 Gabor 滤波器不能很好地提取图像局部弯曲特征的问题。 经过理论分析,实践研究表明,改进后的 Gabor 滤波器提取指纹纹理的效果要优于传统 Gabor 算子。
Abstract:
For the extraction of minutiae feature and image feature in fingerprint texture,the commonly used methods of texture extraction such as statistical features of LBP texture,texture feature extraction based on fractal dimension,Gabor filter texture extraction and Tamura texture analysis are researched. According to the characteristics of optimal localization in frequency domain and time domain simultaneously for Gabor filter,the local structure information about spatial frequency (scale),spatial location and direction selectivity can be well described. For this,we propose introducing two different curvature factors on the basis of traditional Gabor function model,and solve the problem that the general Gabor filter cannot be used to extract the local bending features by the characteristics of general Gabor filter decomposed into one-dimensional Gauss filter in two orthogonal directions. After theoretical analysis and practical research,it is indicated that the improved Gabor filter is better than the traditional Gabor filter for the extraction of the fingerprint texture.

相似文献/References:

[1]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(04):136.
[2]李广水 郑滔 孙梅.基于分形维的决策树构建及应用研究[J].计算机技术与发展,2009,(12):5.
 LI Guang-shui,ZHENG Tao,SUN Mei.Research of Decision Tree Design and Application Based on Fractal Dimension[J].,2009,(04):5.
[3]江良洲 龙凤 杨庆.基于图像分形计算的磨粒定量参数识别研究[J].计算机技术与发展,2010,(07):227.
 JIANG Liang-zhou,LONG Feng,YANG Qing.Quantitative Analysis and Recognition of Wear Particle Based on Fractal Description[J].,2010,(04):227.
[4]龚劬 罗淑芬 安艳萍.使用分形维数分类的密写方法[J].计算机技术与发展,2010,(08):167.
 GONG Qu,LUO Shu-fen,AN Yan-ping.Steganographic Method Based on Fractal Dimension[J].,2010,(04):167.
[5]贾丽会 张修如.分形理论及在信号处理中的应用[J].计算机技术与发展,2007,(09):203.
 JIA Li-hui,ZHANG Xiu-ru.Fractal Theory and Its Application in Signal Processing[J].,2007,(04):203.
[6]张虎 方贤勇 吴忠标.基于多尺度细胞局部二值模式的人体检测[J].计算机技术与发展,2012,(07):52.
 ZHANG Hu,FANG Xian-yong,WU Zhong-biao.Human Detection Based on Multi-scale Cell Structured Local Binary Pattern[J].,2012,(04):52.
[7]魏岩,涂铮铮,郑爱华,等.结合RGB颜色特征和纹理特征的消影算法[J].计算机技术与发展,2013,(10):72.
 WEI Yan,TU Zheng-zheng,ZHENG Ai-hua,et al.Shadow Elimination Algorithm of Combination of RGB Color Feature and Texture Feature[J].,2013,(04):72.
[8]顾绍通. 直线提取的预处理研究[J].计算机技术与发展,2017,27(09):40.
 GU Shao-tong. Investigation on Preprocessing of Line Extraction[J].,2017,27(04):40.
[9]宋辉,刘奉华.基于数据预分析的虹膜识别方法[J].计算机技术与发展,2018,28(08):58.[doi:10.3969/ j. issn.1673-629X.2018.08.012]
 SONG Hui,LIU Feng-hua.An Iris Recognition Method Based on Data Pre-analysis[J].,2018,28(04):58.[doi:10.3969/ j. issn.1673-629X.2018.08.012]
[10]张雪梅,公维宾,邬建志,等.基于纹理特征融合的人脸表情识别[J].计算机技术与发展,2020,30(03):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]
 ZHANG Xue-mei,GONG Wei-bin,WU Jian-zhi,et al.Facial Expression Recognition Based on Texture Feature Fusion[J].,2020,30(04):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]

更新日期/Last Update: 2018-06-07