[1]孙滨,毛建景.基于相对辨识关系的属性约简算法[J].计算机技术与发展,2018,28(04):99-103.[doi:10.3969/ j. issn.1673-629X.2018.04.021]
 SUN Bin,MAO Jian-jing.An Attribute Reduction Algorithm Based on Relative Discernible Relation[J].,2018,28(04):99-103.[doi:10.3969/ j. issn.1673-629X.2018.04.021]
点击复制

基于相对辨识关系的属性约简算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年04期
页码:
99-103
栏目:
智能、算法、系统工程
出版日期:
2018-04-10

文章信息/Info

Title:
An Attribute Reduction Algorithm Based on Relative Discernible Relation
文章编号:
1673-629X(2018)04-0099-05
作者:
孙滨毛建景
郑州工业应用技术学院 信息工程学院,河南 郑州 451100
Author(s):
SUN BinMAO Jian-jing
School of Information Technology,Zhengzhou University of Industrial Technology,Zhengzhou 451100,China
关键词:
粗糙集相对可辨识关系属性集属性约简
Keywords:
rough setsrelative discernible relationattribute setattribute reduction
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.04.021
文献标志码:
A
摘要:
介绍了决策信息系统中的可辨识关系、相对辨识关系等相关概念,完成了属性集独立性判定工作。 将属性集的可辨识能力和相对辨识能力与属性集所辨识的对象联系起来,研究了两种基于相对辨识关系的属性重要度求解方法,完成了属性集独立或依赖、是否为决策信息系统约简的判定。 依据相对辨识关系,给出了相应的改进算法,利用该算法描述因属性集属性的增减而引起它的相对辨识能力的变化。 该算法是从条件属性集中先判断各个属性的相对可辨识关系,其对象对个数最大者组成约简集,然后再在此约简集中逐渐添加属性,直至满足约简的条件。 该算法是一种无核的属性约简算法,无论算法时间复杂度还是约简工作量在一定程度上都有所降低,并通过实例验证了其有效性。
Abstract:
We mainly introduce some related concepts in decision information system,such as discernible relation and relative discernible relation,and complete the attribute set independence judgment. Connecting the discernibility and relative discernibility of the attribute set with the object of identification of the property set,we also study the evaluation methods of attribute importance between the two kinds of relative identification and finish the judgment of attribute,s independence or dependence and whether to do reduction of decision information system. Based on the relative recognition relation,the corresponding improvement algorithm is given,by which the variation of the relative recognition caused by the addition or subtraction of attribute set attributes is described. The algorithm determines the relatively discernible relation of each attribute from the condition attribute set,taking the largest number of object as the reduction set where the attributes are gradually added until meeting the conditions of reduction. It is a kind of seedless attribute reduction algorithm,which is reduced
to a certain extent regardless of time complexity or reduction workload. Its validity is verified by an example.

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(04):5.
[2]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(04):12.
[3]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(04):232.
[4]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(04):136.
[5]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].,2008,(04):158.
[6]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].,2009,(04):107.
[7]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].,2009,(04):178.
[8]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].,2009,(04):17.
[9]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(04):67.
[10]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].,2009,(04):97.

更新日期/Last Update: 2018-06-07