[1]潘峥嵘,贺秀伟.人脸表情识别在智能机器人中的应用研究[J].计算机技术与发展,2018,28(02):173-177.[doi:10.3969/j.issn.1673-629X.2018.02.037]
 PAN Zheng-rong,HE Xiu-wei.Research on Application of Facial Expression Recognition in Intelligent Robot[J].,2018,28(02):173-177.[doi:10.3969/j.issn.1673-629X.2018.02.037]
点击复制

人脸表情识别在智能机器人中的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
173-177
栏目:
应用开发研究
出版日期:
2018-02-10

文章信息/Info

Title:
Research on Application of Facial Expression Recognition in Intelligent Robot
文章编号:
1673-629X(2018)02-0173-05
作者:
潘峥嵘贺秀伟
兰州理工大学 电气与信息工程学院,甘肃 兰州 730050
Author(s):
PAN Zheng-rongHE Xiu-wei
School of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
关键词:
人脸表情识别BRISK主动表观模型局部 Gabor 二进制模式机器人
Keywords:
facial expression recognitionBRISKactive appearance models (AAM)local Gabor binary pattern (LGBP)robot
分类号:
TP391.4
DOI:
10.3969/j.issn.1673-629X.2018.02.037
文献标志码:
A
摘要:
随着智能机器人的快速发展,如何赋予机器人和谐的人机交互能力使其能够感知人类的情感成为当前人机交互研究的热点。针对 AAM 提取人脸表情特征时表征能力不足和实时性差的问题,提出一种基于 BRISK 和 AAM 组合方式提取表情的形状和纹理特征的方法。首先对初始的人脸图像采用 Fast-SIC 算法拟合出人脸的 AAM 模型,在获得人脸关键特征点之后用 BRISK 匹配特征点以增强匹配效率;其次用 LGBP 对人脸 AAM 模型的纹理特征进行提取以增强表情特征的表征能力;最后用 SVM 分类器对提取的表情特征进行分类。实验结果表明,BRISK 与 AAM 组合的特征提取方法可以提高 AAM 模型的拟合速率,用 LGBP 提取的纹理特征更具有可分性。在 CK+ 和 LFPW 人脸库上验证了该算法对面部关键特征点的检测精度和效率,而且与其他算法相比取得了较高的表情识别率,最后在 NAO 机器人平台上验证了算法的实用性。
Abstract:
With the rapid development of intelligent robots,how to give robots harmonious human-computer interaction makes it able to perceive human emotion has been becoming the current hot topics in the study of human-computer interaction.According to the problem of insufficient representation of facial expression features and the poor performance of real-time feature extraction using traditional AAM model,we propose a novel method of extracting shape and texture features of facial expression based on the combination of BRISK and AAM.Firstly,the Fast-SIC algorithm is used to fit out the AAM of face for the original face image.In order to enhance the efficiency of feature matching,BRISK algorithm is used to match the acquired key facial feature points,and then LGBP is utilized to extract texture features of AAM in order to strengthen the representation of facial expression features.Finally,to classify the classes of facial expression features using the SVM classifier.The experiments show that the proposed method has improved the efficiency of fitting AAM,and texture features extracted by LGBP have more separability.The detection accuracy and efficiency of key facial feature points are validated respectively on the datasets of CK+ and LFPW,and this method has achieved high facial expression recognition rate compared with other algorithms.Finally,its practicability is verified on the platform of NAO robot.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张雪梅,公维宾,邬建志,等.基于纹理特征融合的人脸表情识别[J].计算机技术与发展,2020,30(03):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]
 ZHANG Xue-mei,GONG Wei-bin,WU Jian-zhi,et al.Facial Expression Recognition Based on Texture Feature Fusion[J].,2020,30(02):57.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 011]
[3]付倩倩,李 昂.一种改进的卷积神经网络的表情识别算法[J].计算机技术与发展,2020,30(11):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
 FU Qian-qian,LI Ang.An Improved Facial Expression Recognition Technology Based on Convolutional Neural Network[J].,2020,30(02):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
[4]王 珏,潘沛生.基于超分辨率重建的低分辨率表情识别的研究[J].计算机技术与发展,2021,31(07):47.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 008]
 WANG Jue,PAN Pei-sheng.Research on Low-resolution Facial Expression Recognition Based on Super-resolution Reconstruction[J].,2021,31(02):47.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 008]
[5]植炜基,刘春雨,郑婉君,等.基于生成对抗网络的人脸表情识别技术综述[J].计算机技术与发展,2021,31(增刊):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
 ZHI Wei-ji,LIU Chun-yu,ZHENG Wan-jun,et al.Survey of Facial Expression Recognition Technology Based onGenerative Adversarial Network[J].,2021,31(02):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
[6]吕 鹏,单剑锋.基于多特征融合的人脸表情识别算法[J].计算机技术与发展,2022,32(10):151.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]
 LYU Peng,SHAN Jian-feng.Facial Expression Recognition Algorithm Based on Multi-feature Fusion[J].,2022,32(02):151.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 025]
[7]叶耀光,陈宗楠,陈丽群,等.基于通道注意的可变形金字塔表情识别网络[J].计算机技术与发展,2022,32(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 010]
 YE Yao-guang,CHEN Zong-nan,CHEN Li-qun,et al.Channel-attention-based Deformable Pyramid Network for Facial Expression Recognition[J].,2022,32(02):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 010]
[8]李 飞,陈 瑞,童 莹,等.基于增强特征和注意力机制的视频表情识别[J].计算机技术与发展,2022,32(11):183.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 027]
 LI Fei,CHEN Rui,TONG Ying,et al.Video Facial Expression Recognition Based on ECNN-SA[J].,2022,32(02):183.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 027]
[9]王 彬,徐 杨*,石 进,等.多分支精简双线性池化的人脸表情识别[J].计算机技术与发展,2023,33(03):27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 005]
 WANG Bin,XU Yang*,SHI Jin,et al.Multi-branch Compact Bilinear Pooling for Facial Expression Recognition[J].,2023,33(02):27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 005]
[10]张栋昱,赵 磊.融合注意力机制改进 ResNet 的人脸表情识别[J].计算机技术与发展,2023,33(05):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]
 ZHANG Dong-yu,ZHAO Lei.Improved Facial Expression Recognition in ResNet by Integrating Attention Mechanism[J].,2023,33(02):130.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 020]

更新日期/Last Update: 2018-03-29