[1]乔 雨,李玲娟.推荐系统冷启动问题解决策略研究[J].计算机技术与发展,2018,28(02):83-87.[doi:10.3969/j.issn.1673-629X.2018.02.019]
 QIAO Yu,LI Lingjuan.Research on Solution of Solving Cold Start Problem in Recommender Systems[J].,2018,28(02):83-87.[doi:10.3969/j.issn.1673-629X.2018.02.019]
点击复制

推荐系统冷启动问题解决策略研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
83-87
栏目:
智能、算法、系统工程
出版日期:
2018-02-10

文章信息/Info

Title:
Research on Solution of Solving Cold Start Problem in Recommender Systems
文章编号:
1673-629X(2018)02-0083-05
作者:
乔 雨李玲娟
南京邮电大学 计算机学院,江苏 南京 210003
Author(s):
QIAO YuLI Ling-juan
School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
推荐系统协同过滤用户冷启动项目冷启动解决策略
Keywords:
 recommender systemcollaborative filteringnew-user cold-startnew-item cold-startsolving methods
分类号:
TP311
DOI:
10.3969/j.issn.1673-629X.2018.02.019
文献标志码:
A
摘要:
推荐系统利用机器学习技术进行信息过滤,快速准确地定位用户需要的信息,并且能够预测用户对目标项目的喜好程度。由于新用户与新项目的存在,传统的推荐系统在缺少数据信息的情况下面临着冷启动问题的挑战,导致系统无法为用户产生准确的推荐。分析冷启动产生的原因,阐述解决冷启动问题的意义,从是否考虑冷启动类型等方面对目前推荐系统冷启动问题的研究成果进行分类总结,并尝试给出冷启动问题未来的研究重点与难点。目前较为普遍的处理方式是将多种数据源与多种推荐方法进行混合使用,从而提高系统推荐的准确度与效率,但是仍然存在着如在收集用户各类信息的同时如何保护个人隐私、如何建立推荐系统的效用评价等难点问题。
Abstract:
Recommendation systems apply machine learning techniques to filter and locate information accurately,and can predict whether a user would like a given resource.Traditional collaborative filtering systems have to deal with the cold-start problems as new users and items are always present,which fail to produce the accurate recommendation for users.In this paper we first illustrate the causes and the significances of solving the cold-start problems according to the current achievements in research,and then summarize the existing algorithms and compare the performance of them.Finally,we try to give the difficulties and future directions of recommender system.It was found that the most popular way is to have mixed data sources and algorithms to improve the accuracy and efficiency of recommender system at present,but there still have been some difficulty like how to protect personal privacy during getting users’information or how to establish the performance evaluation of recommendation systems.

相似文献/References:

[1]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(02):69.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(02):182.
[3]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(02):4.
[4]高静 应吉康.基于人工免疫系统的推荐系统[J].计算机技术与发展,2007,(05):180.
 GAO Jing,YING Ji-kang.A Recommendation System Based on Artificial Immune System[J].,2007,(02):180.
[5]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(02):18.
[6]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(02):73.
[7]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(02):210.
[8]华铨平.基于FNN的家纺产品个性化推荐系统的研究[J].计算机技术与发展,2011,(09):183.
 HUA Quan-ping.Research on Personalized Recommendation System of Textile Products Used by Family Based on FNN[J].,2011,(02):183.
[9]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(02):73.
[10]马言春 彭志平.基于市场机制的云服务管理研究[J].计算机技术与发展,2012,(03):214.
 MA Yan-chun,PENG Zhi-ping.Research on Cloud Service Management Based on Market Mechanism[J].,2012,(02):214.
[11]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(02):67.
[12]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(02):70.
[13]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(02):66.
[14]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(02):42.
[15]程高伟,丁亦喆,吴振强. 结合用户评分和项目标签的协同过滤算法[J].计算机技术与发展,2015,25(03):71.
 CHENG Gao-wei,DING Yi-zhe,WU Zhen-qiang. Collaborative Filtering Algorithm Combined User Ratings with Item Tags[J].,2015,25(02):71.
[16]张晓琳,付英姿,褚培肖. 杰卡德相似系数在推荐系统中的应用[J].计算机技术与发展,2015,25(04):158.
 ZHANG Xiao-lin,FU Ying-zi,CHU Pei-xiao. Application of Jaccard Similarity Coefficient in Recommender System[J].,2015,25(02):158.
[17]周莹莹,王晓军. 利用离群点算法预处理协同过滤推荐系统数据[J].计算机技术与发展,2015,25(09):129.
 ZHOU Ying-ying,WANG Xiao-jun. Pre-filtering Data of Collaborative Filtering Recommendation System by Outliers Algorithm[J].,2015,25(02):129.
[18]陈宗言,颜俊. 基于稀疏数据预处理的协同过滤推荐算法[J].计算机技术与发展,2016,26(07):59.
 CHEN Zong-yan,YAN Jun. Collaborative Filtering Recommendation Algorithm Based on Sparse Data Pre-processing[J].,2016,26(02):59.
[19]张天杰,曹苏燕,闫世洋. 基于项目近邻的约束概率矩阵分解算法[J].计算机技术与发展,2016,26(10):64.
 ZHANG Tian-jie,CAO Su-yan,YAN Shi-yang. A Constrained Probabilistic Matrix Factorization Algorithm Based on Item-neighborhood[J].,2016,26(02):64.
[20]张应辉,司彩霞. 基于用户偏好和项目特征的协同过滤推荐算法[J].计算机技术与发展,2017,27(01):16.
 ZHANG Ying-hui,SI Cai-xia. A Collaborative Filtering Algorithm Based on Interest of User and Attributes of Item[J].,2017,27(02):16.

更新日期/Last Update: 2018-03-28