[1]徐 曌,张 斌.基于约简矩阵和 C4.5 决策树的故障诊断方法[J].计算机技术与发展,2018,28(02):40-44.[doi:10.3969/j.issn.1673-629X.2018.02.010]
 XU Zhao,ZHANG Bin.A Fault Diagnosis Method Based on C4.5 Decision Tree and Reduction Matrix[J].,2018,28(02):40-44.[doi:10.3969/j.issn.1673-629X.2018.02.010]
点击复制

基于约简矩阵和 C4.5 决策树的故障诊断方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
40-44
栏目:
智能、算法、系统工程
出版日期:
2018-02-10

文章信息/Info

Title:
A Fault Diagnosis Method Based on C4.5 Decision Tree and Reduction Matrix
文章编号:
1673-629X(2018)02-0040-05
作者:
徐 曌张 斌
桂林电子科技大学 计算机与信息安全学院,广西 桂林 541000
Author(s):
XU ZhaoZHANG Bin
School of Computer and Informaiton Security,Guilin University of Electronic Technology,Guilin 541000,China
关键词:
粗糙集可辨识矩阵C4.5 算法决策树故障诊断
Keywords:
rough setdiscernible matrixC4.5 algorithmdecision treefault diagnosis
分类号:
TP393
DOI:
10.3969/j.issn.1673-629X.2018.02.010
文献标志码:
A
摘要:
现阶段由于智能装备的结构和功能不断完善,机械故障预兆和故障特征也不断复杂化,导致了故障诊断难度大大增加。由于机器学习和数据挖掘技术的不断革新,基于数据挖掘的故障诊断系统快速发展,提高了故障诊断效率,减少了因诊断延迟造成的损失。对此,提出一种基于辨识约简矩阵的决策树故障诊断方法,实现了故障样本决策表的高效生成并保证诊断的正确性。首先采用粗糙集的决策树方法建立故障诊断决策表,然后离散化处理特征数据;接着采用可辨别矩阵约简算法进行属性约简,删除冗余信息,形成精简的决策表;最后使用 C4.5 算法构造出最终决策树,并用该方法与直接使用 C4.5 算法所生成决策树进行对比分析。实验结果表明,该方案有一定的容错能力,并且是一种快速、可靠的故障诊断方法。
Abstract:
Due to the continuous improvement of the structure and function of intelligent equipment at present,the mechanical failure warning and fault features are also becoming increasingly complicated,resulting in a great increase in fault diagnosis.With the continuous innovation of machine learning and data mining technology,the fault diagnosis system based on data mining is developing rapidly,which improves the efficiency of fault diagnosis and reduces the loss caused by the delay of diagnosis.For this,we put forward a decision tree fault diagnosis
scheme based on identification reduction matrix,which can effectively extract the fault samples and ensure the correctness of the diagnosis.Firstly,the decision tree method based on rough set is used to establish the fault diagnosis decision table,and then the characteristic data are discretized.Then the algorithm of the discernible matrix reduction is used for attribute reduction,deleting redundant information,and forming a simplified decision table.Finally,the final decision tree is constructed by C4.5 algorithm and is compared with the decision tree generated by C4.5 algorithm.The experiments show that the scheme,with a certain fault tolerance,is a fast and reliable fault diagnosis method.

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(02):5.
[2]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(02):12.
[3]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(02):232.
[4]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(02):136.
[5]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].,2008,(02):158.
[6]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].,2009,(02):107.
[7]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].,2009,(02):178.
[8]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].,2009,(02):17.
[9]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(02):67.
[10]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].,2009,(02):97.

更新日期/Last Update: 2018-03-26