[1]彭昀磊,牛 耘.基于弱监督的蛋白质交互识别[J].计算机技术与发展,2018,28(02):19-23.[doi:10.3969/j.issn.1673-629X.2018.02.005]
 PENG Yunlei,NIU Yun.Protein-protein Interaction Identification Based on Weak Supervision[J].,2018,28(02):19-23.[doi:10.3969/j.issn.1673-629X.2018.02.005]
点击复制

基于弱监督的蛋白质交互识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
19-23
栏目:
智能、算法、系统工程
出版日期:
2018-02-10

文章信息/Info

Title:
Protein-protein Interaction Identification Based on Weak Supervision
文章编号:
1673-629X(2018)02-0019-05
作者:
彭昀磊牛 耘
南京航空航天大学 计算机科学与技术学院,江苏 南京 210016
Author(s):
PENG Yun-leiNIU Yun
School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
关键词:
蛋白质交互弱监督聚类模式
Keywords:
protein-protein interactionweak supervisionclusteringpattern
分类号:
TP391
DOI:
10.3969/j.issn.1673-629X.2018.02.005
文献标志码:
A
摘要:
蛋白质交互信息是解决大量医学难题的关键信息,这些信息都记录在医学文献中,随着生物医学文献的大量增加,以手工收集信息的方式已经难以满足实际需求。对此,提出一种基于弱监督的方法识别文本中的蛋白质交互关系。该方法首先根据文本库产生蛋白质交互的向量表示;接着根据蛋白质对实例的相似性对实例聚类,产生提取模式;然后根据提取模式从文本库中找到新的满足条件的蛋白质对实例,作为候选实例;最后对候选实例对应的蛋白质对进行评估,并将满足条件的蛋白质对添加到种子集合中。该方法仅需少量的蛋白质对作为种子,通过迭代算法不断扩充种子集,可以使得监督最小化,极大地减少了人工干预。实验结果表明,该方法取得了较高的精度和召回率。
Abstract:
Protein-protein interaction information is the key to solve a lot of medical problems,and the information is recorded in the medical literature.With the increase of the biomedical literature,collecting information manually is difficult to meet the actual needs.For this,we propose a method based on weak supervision to identify protein-protein interactions in the text.Firstly,this method generates vector representation of protein interactions according to the text library.Moreover,it clusters instances according to the similarity of instances containing pro-
teins and generates extraction patterns.Then,it finds new instances that meet the conditions as candidate instances from the text library according to extraction patterns.Lastly,it evaluates proteins that candidate instances correspond and adds proteins that meet the conditions to seed set.This method only needs a small amount of protein pairs as seeds,extending seed set through iterative algorithm,which can minimize the supervision and greatly reduce the manual intervention.The experiment shows that the method has achieved high precision and recall.

相似文献/References:

[1]王宇伟,牛耘. 基于关系相似性的蛋白质交互作用识别[J].计算机技术与发展,2015,25(02):42.
 WANG Yu-wei,NIU Yun. Identification of Protein-protein Interaction Based on Relational Similarity[J].,2015,25(02):42.
[2]吴红梅,牛耘. 基于词性加权和单词相似性的蛋白质交互识别[J].计算机技术与发展,2015,25(12):6.
 WU Hong-mei,NIU Yun. Protein-protein Interaction Identification Based on POS Weighted and Word Similarity[J].,2015,25(02):6.
[3]吴红梅,牛耘. 基于特征加权的蛋白质交互识别[J].计算机技术与发展,2016,26(02):114.
 WU Hong-mei,NIU Yun. Identification of Protein-protein Interaction Based on Feature Weighted[J].,2016,26(02):114.
[4]彭昀磊,牛耘.基于词向量的特征词选择[J].计算机技术与发展,2018,28(06):7.[doi:10.3969/ j. issn.1673-629X.2018.06.002]
 PENG Yun-lei,NIU Yun.Feature Words Selection Based on Word Embedding[J].,2018,28(02):7.[doi:10.3969/ j. issn.1673-629X.2018.06.002]
[5]张景,吴红梅,牛耘. 基于Minimum Cuts的蛋白质交互识别[J].计算机技术与发展,2017,27(06):17.
 ZHANG Jing,WU Hong-mei,NIU Yun. Identification of Protein-protein Interaction with Minimum Cuts[J].,2017,27(02):17.
[6]闵庆凯,蔡松成.基于交叉预测的蛋白质交互识别[J].计算机技术与发展,2018,28(04):17.[doi:10.3969/ j. issn.1673-629X.2018.04.004]
 MIN Qing-kai,CAI Song-cheng.Protein-protein Interaction Identification Based on Cross Prediction[J].,2018,28(02):17.[doi:10.3969/ j. issn.1673-629X.2018.04.004]
[7]蔡松成,牛耘.基于最大期望算法的蛋白质交互关系识别[J].计算机技术与发展,2018,28(08):48.[doi:10.3969/ j. issn.1673-629X.2018.08.010]
 CAI Song-cheng,NIU Yun.Protein-protein Interaction Identification Based on Expectation Maximization Algorithm[J].,2018,28(02):48.[doi:10.3969/ j. issn.1673-629X.2018.08.010]
[8]毛宇薇,牛耘.基于分布式假设的弱监督蛋白质交互关系识别[J].计算机技术与发展,2018,28(09):34.[doi:10.3969/j.issn.1673-629X.2018.09.008]
 MAO Yu-wei,NIU Yun.Weakly Supervised Protein-protein Interaction Identification Based on Distribution Hypothesis[J].,2018,28(02):34.[doi:10.3969/j.issn.1673-629X.2018.09.008]
[9]蔡松成,牛耘.基于词频统计的蛋白质交互关系识别[J].计算机技术与发展,2019,29(02):65.[doi:10.3969/j.issn.1673-629X.2019.02.013]
 CAI Songcheng,NIU Yun.Protein-protein Interaction Identification Based on Word Frequency Count[J].,2019,29(02):65.[doi:10.3969/j.issn.1673-629X.2019.02.013]
[10]毛宇薇,牛耘.基于关键词的蛋白质交互关系识别[J].计算机技术与发展,2019,29(03):18.[doi:10.3969/ j. issn.1673-629X.2019.03.004]
 MAO Yu-wei,NIU Yun.Protein-protein Interaction Identification Based on Keywords[J].,2019,29(02):18.[doi:10.3969/ j. issn.1673-629X.2019.03.004]

更新日期/Last Update: 2018-03-26