[1]申静波,闫 铁,李井辉,等.基于改进 BP 算法的摩阻因数预测方法研究[J].计算机技术与发展,2018,28(01):164-168.[doi:10.3969/ j. issn.1673-629X.2018.01.035]
 SHEN Jing-bo,YAN Tie,LI Jing-hui,et al. Research on Friction Coefficient Prediction Based on Improved BP Algorithm[J].Computer Technology and Development,2018,28(01):164-168.[doi:10.3969/ j. issn.1673-629X.2018.01.035]
点击复制

基于改进 BP 算法的摩阻因数预测方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年01期
页码:
164-168
栏目:
应用开发研究
出版日期:
2018-01-10

文章信息/Info

Title:
 Research on Friction Coefficient Prediction Based on Improved BP Algorithm
文章编号:
1673-629X(2018)01-0164-05
作者:
申静波1 闫 铁2 李井辉12 孙丽娜1
1. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318;
2. 东北石油大学 油气钻井技术国家工程实验室,黑龙江 大庆 163318
Author(s):
SHEN Jing-bo 1 YAN Tie 2 LI Jing-hui 12 SUN Li-na 1
1. School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China;
2. National Engineering Laboratory of Oil and Gas Drilling Technology,Northeast Petroleum University,Daqing 163318,China)
关键词:
神经网络摩阻因数BP 算法摩阻扭矩
Keywords:
neural networkfriction coefficientimproved BP algorithmdrag and torque
分类号:
TP391.9
DOI:
10.3969/ j. issn.1673-629X.2018.01.035
文献标志码:
A
摘要:
在钻井工程设计与实钻过程中,恰当指定摩阻因数是准确预测摩阻、扭矩的前提条件,摩阻因数受众多因素影响且具有不确定性,很难利用普适的数学公式明确表达摩阻因数及其影响因素之间的关系。 针对摩阻因素的特点,提出了采用改进的 BP 神经网络对钻柱力学分析中的摩阻因数进行计算的方法。 首先研究 BP 算法的原理和数学表示,然后结合预测实际将增加动量项、自适应学习率等方法对其进行改进,最后根据摩阻因数的内涵建立以改进 BP 算法为基础的摩阻因数预测模型。 实验结果表明,利用改进 BP 神经网络能够有效实现摩阻因数的准确预测,解决了钻井过程中普遍存在的摩阻因数个体差异问题。
Abstract:
In the process of drilling engineering design and drilling,the reliable friction coefficient should be provided to predict the drag and torque accurately. The friction coefficient is influenced by many factors with uncertainty,so it is difficult to express the relationship between friction coefficient and its factors. According to the characteristics of friction coefficient,we propose a method for computing friction coefficient in drilling string mechanics analysis by BP neural network. Firstly,we research the principle and mathematical representation of BP algorithm,and then improve it with addition of momentum and adaptive learning rate combined with the actual situation. Finally,the friction coefficient prediction model based on improved BP algorithm is established under the connotation of friction coefficient. The simulation shows that the improved BP neural network can be used to improve the prediction accuracy of friction coefficient,which solves the individual difference of friction coefficient in the drilling process.

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].Computer Technology and Development,2010,(01):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].Computer Technology and Development,2010,(01):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].Computer Technology and Development,2008,(01):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].Computer Technology and Development,2009,(01):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].Computer Technology and Development,2009,(01):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].Computer Technology and Development,2009,(01):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].Computer Technology and Development,2009,(01):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].Computer Technology and Development,2009,(01):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].Computer Technology and Development,2009,(01):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].Computer Technology and Development,2009,(01):117.

更新日期/Last Update: 2018-03-13